83 research outputs found
Nonequilibrium phenomena in bilayer electron systems
In the present Letter, we have used magnetocapacitance and magnetoresistance measurements to investigate nonequilibrium phenomena in a bilayer electron system based on GaAs/AlGaAs heterostructures. The magnetic field ramping drives the bilayer electron system out of equilibrium, leading to magnetoresistance hysteresis and spikes. Unlike magnetoresistance, magnetocapacitance results intriguingly show hysteresis even when both layers are in the quantum Hall state. The hysteresis is accompanied by interlayer charge transfer, but the disequilibrium is not limited to interlayer imbalance. Results show that the edge-bulk imbalance can be the initial ground for the appearance of hysteresis. In addition, the nonequilibrium states are observed in which the total, rather than individual, layer densities determine the magnetic field and gate voltage dependencies
Fano resonance in a cavity-reflector hybrid system.
© 2017 authors. Published by the American Physical Society.We present the results of transport measurements in a hybrid system consisting of an arch-shaped quantum point contact (QPC) and a reflector; together, they form an electronic cavity in between them. On tuning the arch-QPC and the reflector, an asymmetric resonance peak in resistance is observed at the one-dimension to two-dimension transition. Moreover, a dip in resistance near the pinch-off of the QPC is found to be strongly dependent on the reflector voltage. These two structures fit very well with the Fano line shape. The Fano resonance was found to get weakened on applying a transverse magnetic field, and smeared out at 100 mT. In addition, the Fano-like shape exhibited a strong temperature dependence and gradually smeared out when the temperature was increased from 1.5 to 20 K. The results might be useful in realizing devices for quantum information processing
Branonium
We study the bound states of brane/antibrane systems by examining the motion
of a probe antibrane moving in the background fields of N source branes. The
classical system resembles the point-particle central force problem, and the
orbits can be solved by quadrature. Generically the antibrane has orbits which
are not closed on themselves. An important special case occurs for some
Dp-branes moving in three transverse dimensions, in which case the orbits may
be obtained in closed form, giving the standard conic sections but with a
nonstandard time evolution along the orbit. Somewhat surprisingly, in this case
the resulting elliptical orbits are exact solutions, and do not simply apply in
the limit of asymptotically-large separation or non-relativistic velocities.
The orbits eventually decay through the radiation of massless modes into the
bulk and onto the branes, and we estimate this decay time. Applications of
these orbits to cosmology are discussed in a companion paper.Comment: 34 pages, LaTeX, 4 figures, uses JHEP
Temperature Dependence of Spin-Split Peaks in Transverse Electron Focusing
We present experimental results of transverse electron-focusing measurements performed using n-type GaAs. In the
presence of a small transverse magnetic field (B⊥), electrons are focused from the injector to detector leading to
focusing peaks periodic in B⊥. We show that the odd-focusing peaks exhibit a split, where each sub-peak represents a
population of a particular spin branch emanating from the injector. The temperature dependence reveals that the
peak splitting is well defined at low temperature whereas it smears out at high temperature indicating the
exchange-driven spin polarisation in the injector is dominant at low temperatures
Priorities for synthesis research in ecology and environmental science
ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
Priorities for synthesis research in ecology and environmental science
ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
- …