159 research outputs found

    The Dynamics of Disorder-Order Transition in Hard Sphere Colloidal Dispersions

    Get PDF
    The Physics of Hard Spheres Experiment (PHaSE) seeks a complete understanding of the entropically driven disorder-order transition in hard sphere colloidal dispersions. The light scattering instrument designed for flight collects Bragg and low angle light scattering in the forward direction via a CCD camera and performs conventional static and dynamic light scattering at 10-160 deg. through fiber optic cables. Here we report on the kinetics of nucleation and growth extracted from time-resolved Bragg images and measurements of the elastic modulus of crystalline phases obtained by monitoring resonant responses to sinusoidal forcing through dynamic light scattering. Preliminary analysis of the former indicates a significant difference from measurements on the ground, while the latter confirms nicely laboratory experiments with the same instrument and predictions from computer simulations

    Commissioning of the CMS High Level Trigger

    Get PDF
    The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008

    Human Worth as Collateral

    Get PDF
    Human worth has taken on a surprising new role: that of market asset. Specifically, lenders in radically different contexts are using their borrowers’ human worth as collateral in loan transactions. The two examples of this new collateralization that I examine are credit card lending in the United States and microlending programs in the Third World. I conclude that the use of human worth in these two contexts is too similar to be coincidental. Rather, this new collateralization is a product of globalization. For those interested in the effect of law on globalization, this convergence in the market for credit teaches important lessons. In both the contexts I examine, the laws governing secured and unsecured lending fail to recognize human worth as collateral. For this reason, the new collateralization serves as a counter-example to the claimed centrality of the rule of law in economic development

    Hadron Spectroscopy: Theory and Experiment

    Get PDF
    Many new results on hadron spectra have been appearing in the past few years thanks to improved experimental techniques and searches in new channels. New theoretical techniques including refined methods of lattice QCD have kept pace with these developments. Much has been learned about states made of both light (u, d, and s) and heavy (c, b) quarks. The present review treats light-quark mesons, glueballs, hybrids, particles with a single c or b quark, charmonium, and bottomonium states. Some prospects for further study are noted.Comment: 29 pages, 9 figures, to be published in Journal of Physics G. Further updating of reference

    Metagenomic Analysis of Respiratory Tract DNA Viral Communities in Cystic Fibrosis and Non-Cystic Fibrosis Individuals

    Get PDF
    The human respiratory tract is constantly exposed to a wide variety of viruses, microbes and inorganic particulates from environmental air, water and food. Physical characteristics of inhaled particles and airway mucosal immunity determine which viruses and microbes will persist in the airways. Here we present the first metagenomic study of DNA viral communities in the airways of diseased and non-diseased individuals. We obtained sequences from sputum DNA viral communities in 5 individuals with cystic fibrosis (CF) and 5 individuals without the disease. Overall, diversity of viruses in the airways was low, with an average richness of 175 distinct viral genotypes. The majority of viral diversity was uncharacterized. CF phage communities were highly similar to each other, whereas Non-CF individuals had more distinct phage communities, which may reflect organisms in inhaled air. CF eukaryotic viral communities were dominated by a few viruses, including human herpesviruses and retroviruses. Functional metagenomics showed that all Non-CF viromes were similar, and that CF viromes were enriched in aromatic amino acid metabolism. The CF metagenomes occupied two different metabolic states, probably reflecting different disease states. There was one outlying CF virome which was characterized by an over-representation of Guanosine-5′-triphosphate,3′-diphosphate pyrophosphatase, an enzyme involved in the bacterial stringent response. Unique environments like the CF airway can drive functional adaptations, leading to shifts in metabolic profiles. These results have important clinical implications for CF, indicating that therapeutic measures may be more effective if used to change the respiratory environment, as opposed to shifting the taxonomic composition of resident microbiota

    Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1

    Get PDF
    Peer reviewe

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    The power of monitoring: optimizing survey designs to detect occupancy changes in a rare amphibian population

    Get PDF
    Biodiversity conservation requires reliable species assessments and rigorously designed surveys. However, determining the survey effort required to reliably detect population change can be challenging for rare, cryptic and elusive species. We used a tropical bromeliad-dwelling frog as a model system to explore a cost-effective sampling design that optimizes the chances of detecting a population decline. Relatively few sampling visits were needed to estimate occupancy and detectability with good precision, and to detect a 30% change in occupancy with 80% power. Detectability was influenced by observer expertise, which therefore also had an effect on the sampling design – less experienced observers require more sampling visits to detect the species. Even when the sampling design provides precise parameter estimates, only moderate to large changes in occupancy will be detected with reliable power. Detecting a population change of 15% or less requires a large number of sites to be surveyed, which might be unachievable for range-restricted species occurring at relatively few sites. Unless there is high initial occupancy, rare and cryptic species will be particularly challenging when it comes to detecting small population changes. This may be a particular issue for long-term monitoring of amphibians which often display low detectability and wide natural fluctuations

    Institutional Strategies in Emerging Markets

    Full text link
    corecore