947 research outputs found

    Municipal transitions: The social, energy, and spatial dynamics of sociotechnical change in South Tyrol, Italy

    Get PDF
    With the aim of proposing recommendations on how to use social and territorial specificities as levers for wider achievement of climate and energy targets at local level, this research analyses territories as sociotechnical systems. Defining the territory as a sociotechnical system allows us to underline the interrelations between space, energy and society. Groups of municipalities in a region can be identified with respect to their potential production of renewable energy by means of well-known data-mining approaches. Similar municipalities linking together can share ideas and promote collaborations, supporting clever social planning in the transition towards a new energy system. The methodology is applied to the South Tyrol case study (Italy). Results show eight different spatially-based sociotechnical systems within the coherent cultural and institutional context of South Tyrol. In particular, this paper observes eight different systems in terms of (1) different renewable energy source preferences in semi-urban and rural contexts; (2) different links with other local planning, management, and policy needs; (3) different socio-demographic specificities of individuals and families; (4) presence of different kinds of stakeholders or of (5) different socio-spatial organizations based on land cover. Each energy system has its own specificities and potentialities, including social and spatial dimensions, that can address a more balanced, inclusive, equal, and accelerated energy transition at the local and translocal scale

    Co-constructing a new framework for evaluating social innovation in marginalized rural areas

    Get PDF
    The EU funded H2020 project \u2018Social Innovation in Marginalised Rural Areas\u2019 (SIMRA; www.simra-h2020.eu) has the overall objective of advancing the state-of-the-art in social innovation. This paper outlines the process for co- developing an evaluation framework with stakeholders, drawn from across Europe and the Mediterranean area, in the fields of agriculture, forestry and rural development. Preliminary results show the importance of integrating process and outcome-oriented evaluations, and implementing participatory approaches in evaluation practice. They also raise critical issues related to the comparability of primary data in diverse regional contexts and highlight the need for mixed methods approaches in evaluation

    The role of dark matter in the galaxy mass-size relationship

    Full text link
    The observed relationship between stellar mass and effective radius for early type galaxies, pointed out by many authors, is interpreted in the context of Clausius' virial maximum theory. In this view, it is strongly underlined that the key of the above mentioned correlation is owing to the presence of a deep link between cosmology and the existence of the galaxy Fundamental Plane. Then the ultimate meaning is: understanding visible mass - size correlation and/or Fundamental Plane means understanding how galaxies form. The mass - size relationship involves baryon (mainly stellar) mass and its typical dimension related to the light, but it gets memory of the cosmological mass variance at the equivalence epoch. The reason is that the baryonic component virializes by sharing virial energy in about equal amount between baryons and dark matter, this sharing depending, in turn, on the steepness of the dark matter distribution. The general strategy consists in using the two-component tensor virial theorem for determining the virialized baryonic configurations. A King and a Zhao density profile are assumed for the inner baryonic and the outer dark matter component, respectively, at the end of the relaxation phase. All the considerations are restricted to spherical symmetry for simplicity. The effect of changing the dark-to-baryon mass ratio, m, is investigated inside a LambdaCDM scenario. A theoretical mass - size relation is expressed for the baryonic component, which fits fairly well to the data from a recently studied galaxy sample. Finally, the play of intrinsic dispersion on the mass ratio, m, is discussed in the light of the cusp/core problem and some consequences are speculated about the existence of a limit, m_l, expected by the theory.Comment: 36 pages, 8 figures (Accepted for publication in New Astronomy

    Dilatonic Black Holes, Naked Singularities and Strings

    Full text link
    We extend a previous calculation which treated Schwarschild black hole horizons as quantum mechanical objects to the case of a charged, dilaton black hole. We show that for a unique value of the dilaton parameter `a', which is determined by the condition of unitarity of the S matrix, black holes transform at the extremal limit into strings.Comment: 8 pages, REVTE

    An Activity Classifier based on Heart Rate and Accelerometer Data Fusion

    Get PDF
    The European project ProeTEX realized a novel set of prototypes based on smart garments that integrate sensors for the real-time monitoring of physiological, activity-related and environmental parameters of the emergency operators during their interventions. The availability of these parameters and the emergency scenario suggest the implementation of novel classification methods aimed at detecting dangerous status of the rescuer automatically, and based not only on the classical activityrelated signals, rather on a combination of these data with the physiological status of the subject. Here we propose a heart rate and accelerometer data fusion algorithm for the activity classification of rescuers in the emergency context

    An Integrated Method for the Geometric Inspection of Wind Turbine Hubs with Industrial Robot

    Get PDF
    Wind turbine manufacturing requires the assembly of large mechanical components, which is crucial to inspect along the production line in order to prevent high reparation costs afterwards. A critical component in this process is the turbine hub, which supports the wind blades and ball bearings allowing the pitch motion. At present, hub inspection is a manual task, which requires expert operators and long execution time. This paper proposes a novel methodology for the selfadaptive inspection of wind turbine hubs via industrial robots: a set of Critical-To-Quality parameters (CTQs), are inferred from the CAD drawing of wind turbine hub; registration between robot and hub is performed; finally a CAD2robot trajectories planning is accomplished. Methodology is implemented through a Matlab and Simulink Programming Language and combined with an Industrial PC-based control technology Beckhoff TwinCAT 3. Tests with an Fanuc Industrial M-6iB robot arm and R-30iA controller have been successfully performed on re-scaled model of the hub. The flexibility of this methodology allows applications on other industrial contexts, which can benefit from automation
    • …
    corecore