4,904 research outputs found
On Optimization Modulo Theories, MaxSMT and Sorting Networks
Optimization Modulo Theories (OMT) is an extension of SMT which allows for
finding models that optimize given objectives. (Partial weighted) MaxSMT --or
equivalently OMT with Pseudo-Boolean objective functions, OMT+PB-- is a
very-relevant strict subcase of OMT. We classify existing approaches for MaxSMT
or OMT+PB in two groups: MaxSAT-based approaches exploit the efficiency of
state-of-the-art MAXSAT solvers, but they are specific-purpose and not always
applicable; OMT-based approaches are general-purpose, but they suffer from
intrinsic inefficiencies on MaxSMT/OMT+PB problems.
We identify a major source of such inefficiencies, and we address it by
enhancing OMT by means of bidirectional sorting networks. We implemented this
idea on top of the OptiMathSAT OMT solver. We run an extensive empirical
evaluation on a variety of problems, comparing MaxSAT-based and OMT-based
techniques, with and without sorting networks, implemented on top of
OptiMathSAT and {\nu}Z. The results support the effectiveness of this idea, and
provide interesting insights about the different approaches.Comment: 17 pages, submitted at Tacas 1
Recommended from our members
Night-time oxidation of surfactants at the air–water interface: effects of chain length, head group and saturation
Reactions of the key atmospheric night-time oxidant NO3 with organic monolayers at the air–water interface are used as proxies for the ageing of organic-coated aqueous aerosols. The surfactant molecules chosen for this study are oleic acid (OA), palmitoleic acid (POA), methyl oleate (MO) and stearic acid (SA) to investigate the effects of chain length, head group and degree of unsaturation on the reaction kinetics and products formed. Fully and partially deuterated surfactants were studied using neutron reflectometry (NR) to determine the reaction kinetics of organic monolayers with NO3 at the air–water interface for the first time. Kinetic modelling allowed us to determine the rate coefficients for the oxidation of OA, POA and MO monolayers to be (2.8 ± 0.7) × 10−8 cm2 molecule−1 s−1, (2.4 ± 0.5) × 10−8 cm2 molecule−1 s−1 and (3.3 ± 0.6) × 10−8 cm2 molecule−1 s−1, respectively. The corresponding uptake coefficients were found to be (2.1 ± 0.5) × 10−3, (1.7 ± 0.3) × 10−3 and (2.1 ± 0.4) × 10−3. For the much slower NO3-initiated oxidation of the saturated surfactant SA we found a loss rate of (5 ± 1) × 10−12 cm2 molecule−1 s−1 which we consider to be an upper limit for the reactive loss, and estimated an uptake coefficient of (5 ± 1) × 10−7. Our investigations demonstrate that NO3 will contribute substantially to the processing of unsaturated surfactants at the air–water interface during night-time given its reactivity is ca. two orders of magnitude higher than that of O3. Furthermore, the relative contributions of NO3 and O3 to the oxidative losses vary massively between species that are closely related in structure: NO3 reacts ca. 400 times faster than O3 with the common model surfactant oleic acid, but only ca. 60 times faster with its methyl ester MO. It is therefore necessary to perform a case-by-case assessment of the relative contributions of the different degradation routes for any specific surfactant. The overall impact of NO3 on the fate of saturated surfactants is slightly less clear given the lack of prior kinetic data for comparison, but NO3 is likely to contribute significantly to the loss of saturated species and dominate their loss during night-time. The retention of the organic character at the air–water interface differs fundamentally between the different surfactant species: the fatty acids studied (OA and POA) form products with a yield of ∼ 20% that are stable at the interface while NO3-initiated oxidation of the methyl ester MO rapidly and effectively removes the organic character (≤ 3% surface-active products). The film-forming potential of reaction products in real aerosol is thus likely to depend on the relative proportions of saturated and unsaturated surfactants as well as the head group properties. Atmospheric lifetimes of unsaturated species are much longer than those determined with respect to their reactions at the air–water interface, so that they must be protected from oxidative attack e.g. by incorporation into a complex aerosol matrix or in mixed surface films with yet unexplored kinetic behaviour
Deriving the respiratory sinus arrhythmia from the heartbeat time series using Empirical Mode Decomposition
Heart rate variability (HRV) is a well-known phenomenon whose characteristics
are of great clinical relevance in pathophysiologic investigations. In
particular, respiration is a powerful modulator of HRV contributing to the
oscillations at highest frequency. Like almost all natural phenomena, HRV is
the result of many nonlinearly interacting processes; therefore any linear
analysis has the potential risk of underestimating, or even missing, a great
amount of information content. Recently the technique of Empirical Mode
Decomposition (EMD) has been proposed as a new tool for the analysis of
nonlinear and nonstationary data. We applied EMD analysis to decompose the
heartbeat intervals series, derived from one electrocardiographic (ECG) signal
of 13 subjects, into their components in order to identify the modes associated
with breathing. After each decomposition the mode showing the highest frequency
and the corresponding respiratory signal were Hilbert transformed and the
instantaneous phases extracted were then compared. The results obtained
indicate a synchronization of order 1:1 between the two series proving the
existence of phase and frequency coupling between the component associated with
breathing and the respiratory signal itself in all subjects.Comment: 12 pages, 6 figures. Will be published on "Chaos, Solitons and
Fractals
Syllabic quantity patterns as rhythmic features for Latin authorship attribution
It is well known that, within the Latin production of written text, peculiar metric schemes were followed not only in poetic compositions, but also in many prose works. Such metric patterns were based on so-called syllabic quantity, that is, on the length of the involved syllables, and there is substantial evidence suggesting that certain authors had a preference for certain metric patterns over others. In this research we investigate the possibility to employ syllabic quantity as a base for deriving rhythmic features for the task of computational authorship attribution of Latin prose texts. We test the impact of these features on the authorship attribution task when combined with other topic-agnostic features. Our experiments, carried out on three different datasets using support vector machines (SVMs) show that rhythmic features based on syllabic quantity are beneficial in discriminating among Latin prose authors
Recommended from our members
Complementarity of neutron reflectometry and ellipsometry for the study of atmospheric reactions at the air–water interface
The combined application of neutron reflectometry (NR) and ellipsometry to determine the oxidation kinetics of organic monolayers at the air–water interface is described for the first time. This advance was possible thanks to a new miniaturised reaction chamber that is compatible with the two techniques and has controlled gas delivery. The rate coefficient for the oxidation of methyl oleate monolayers by gas-phase O3 determined using NR is (5.4 ± 0.6) × 10−10 cm2 per molecule per s, which is consistent with the value reported in the literature but is now better constrained. This highlights the potential for the investigation of faster atmospheric reactions in future studies. The rate coefficient determined using ellipsometry is (5.0 ± 0.9) × 10−10 cm2 per molecule per s, which indicates the potential of this more economical, laboratory-based technique to be employed in parallel with NR. In this case, temporal fluctuations in the optical signal are attributed to the mobility of islands of reaction products. We outline how such information may provide critical missing information in the identification of transient reaction products in a range of atmospheric surface reactions in the future
Fertility and well-being in the italian regions
We analyse the association between fertility rates and well-being in the Italian regions in the period 2012-2017. Well-being is measured by the indicators of Equitable and Sustainable Well-being (BES), collected by ISTAT since 2013 with the aim of evaluating the economic, social and environmental development of the society through measurement of citizens’ life quality. We expect that the regions performing better in terms of well-being conditions are also those with the highest levels of fertility. Both graphical and panel data regression analyses support our main hypothesis, but also reveal that in different clusters of regions the intensity and direction of the relationship significantly change. Our results also stress the need of taking the different domains of well-being into account while explaining reproductive behaviour of resident population at territorial level
Steam - oxygen gasification of refuse derived fuel in fluidized beds: Modelling and pilot plant testing
A one-dimensional kinetic model for steam‑oxygen gasification of refuse derived fuel in a bubbling fluidized bed reactor has been developed. The model incorporates the reaction network of steam‑oxygen gasification within the fluid dynamics of a fluidized bed to predict waste and tars conversion, gas composition and overall gasification performance. The model was validated by comparing outlet products composition and temperature profile with experimental data from a pilot-scale fluidized bed gasifier, operated at different conditions. The model showed accurate predictive capability and ease of computation. The effects of the operating conditions on gas yield and process efficiency were evaluated and the most appropriate fuel feeding height, equivalent ratio and the relative amount of steam to inject were identified
- …