5 research outputs found
Use of Biostimulants for Organic Apple Production: Effects on Tree Growth, Yield, and Fruit Quality at Harvest and During Storage
The experiment was conducted during two consecutive seasons (years 2016 and 2017) in an organic apple orchard of the cultivar Jonathan. Several biostimulants were tested (10 in total), including humic acids, macro and micro seaweed extracts, alfalfa protein hydrolysate, amino acids alone or in combination with zinc, B-group vitamins, chitosan and a commercial product containing silicon. Treatments were performed at weekly intervals, starting from the end of May until mid-August. The macroseaweed extract was effective in stimulate tree growth potential in both years, as shown by a significantly larger leaf area (+20% as compared to control) and by an higher chlorophyll content and leaf photosynthetic rate in year 2016. As for the yield performances and apples quality traits at harvest (average fruit weight, soluble solids content, titratable acidity, and flesh firmness), they were generally affected by the different climatic conditions that characterized the two growing seasons (year 2017 being characterized by higher maximal and average temperatures and by limited rainfalls at the beginning of the season). Treatments with macroseaweed extract, B-group vitamins and alfalfa protein hydrolysate were able to significantly improve the intensity and extension of the red coloration of apples at harvest. Correspondingly, the anthocyanin content in the skin of apples treated with the same biostimulants resulted significantly higher than control, highlighting the potential influence of these substances on the synthesis of secondary metabolites in apple. The incidence of physiological disorders was also monitored during apple storage period. Amino acids plus zinc application was effective in reducing (more than 50%) the incidence of the “Jonathan spot,” the main post-harvest disorder for this cultivar
Quality of raspberries preserves obtained from different varieties
The aim of this work was to qualitatively evaluate four different raspberry varieties in order to identify the most suitable for processing into fruit spread. The study, which consisted of two years of experimentation, included agronomic evaluations (choice of varieties, cultivation under uniform conditions, harvesting and analysis of fruit quality parameters), technological evaluations (standardisation of the fruit spread preparation procedure, evaluation of the finished product in terms of chemical and physical properties and the evolution of the colour of the preserves over time) and sensory evaluations (consumer test aimed at identifying preferences between fruit spreads). The results obtained can support local producers by providing information on the characteristics of the varieties under investigation and the processed products obtained from them
Foliar Applications of Biostimulants Promote Growth, Yield and Fruit Quality of Strawberry Plants Grown under Nutrient Limitation
Biostimulants have been found effective in enhancing plant resistance toward stressful conditions. The aim of the present study was to evaluate the efficacy of selected biostimulants to overcome the negative effects of nutrient limitation on the growth performances and on the fruit quality of soilless cultivated strawberry plants. The condition of nutrient limitation was imposed by supplying the plants with only a single fertilization at transplantation and by excluding any further nutrient supply for the entire duration of the experiment (three months, from May to July). Strawberry plants were treated seven times during the period from preflowering up to berry maturation with different classes of biostimulants (humic acids, alfalfa hydrolysate, macroseaweed extract and microalga hydrolysate, amino acids alone or in combination with zinc, B-group vitamins, chitosan, and a commercial product containing silicon) at commercial dosages. The use of alfalfa hydrolysate, vitamins, chitosan, and silicon was able to promote biomass accumulation in roots (four to seven folds) and fruits (+20%) of treated plants, whereas the total leaf area increased by 15%–30%. Nutrient concentrations in leaves and roots showed variations for microelements (e.g., Fe, B, Zn, and Si) in response to biostimulant applications, whereas no significant differences were observed for macronutrient contents among treatments. Final berry yield was found around 20% higher in chitosan- and silicon-treated plants. Chitosan treatment significantly increased pulp firmness (by 20%), while a high nutritional value (e.g., phenolic compounds concentration) was observed in alfalfa- and seaweed-treated fruits (+18%–20% as compared to control). The overall outcomes of the present experiment show that selected biostimulants can be considered as a valid agronomic tool able to contrast the negative consequence of growing crops under insufficient nutritional conditions
Foliar Applications of Biostimulants Promote Growth, Yield and Fruit Quality of Strawberry Plants Grown under Nutrient Limitation
Biostimulants have been found effective in enhancing plant resistance toward stressful conditions. The aim of the present study was to evaluate the efficacy of selected biostimulants to overcome the negative effects of nutrient limitation on the growth performances and on the fruit quality of soilless cultivated strawberry plants. The condition of nutrient limitation was imposed by supplying the plants with only a single fertilization at transplantation and by excluding any further nutrient supply for the entire duration of the experiment (three months, from May to July). Strawberry plants were treated seven times during the period from preflowering up to berry maturation with different classes of biostimulants (humic acids, alfalfa hydrolysate, macroseaweed extract and microalga hydrolysate, amino acids alone or in combination with zinc, B-group vitamins, chitosan, and a commercial product containing silicon) at commercial dosages. The use of alfalfa hydrolysate, vitamins, chitosan, and silicon was able to promote biomass accumulation in roots (four to seven folds) and fruits (+20%) of treated plants, whereas the total leaf area increased by 15%–30%. Nutrient concentrations in leaves and roots showed variations for microelements (e.g., Fe, B, Zn, and Si) in response to biostimulant applications, whereas no significant differences were observed for macronutrient contents among treatments. Final berry yield was found around 20% higher in chitosan- and silicon-treated plants. Chitosan treatment significantly increased pulp firmness (by 20%), while a high nutritional value (e.g., phenolic compounds concentration) was observed in alfalfa- and seaweed-treated fruits (+18%–20% as compared to control). The overall outcomes of the present experiment show that selected biostimulants can be considered as a valid agronomic tool able to contrast the negative consequence of growing crops under insufficient nutritional conditions