18 research outputs found

    An antiangiogenic neurokinin-B/thromboxane A2 regulatory axis

    Get PDF
    Establishment of angiogenic circuits that orchestrate blood vessel development and remodeling requires an exquisite balance between the activities of pro- and antiangiogenic factors. However, the logic that permits complex signal integration by vascular endothelium is poorly understood. We demonstrate that a “neuropeptide,” neurokinin-B (NK-B), reversibly inhibits endothelial cell vascular network assembly and opposes angiogenesis in the chicken chorioallantoic membrane. Disruption of endogenous NK-B signaling promoted angiogenesis. Mechanistic analyses defined a multicomponent pathway in which NK-B signaling converges upon cellular processes essential for angiogenesis. NK-B−mediated ablation of Ca2+ oscillations and elevation of 3′–5′ cyclic adenosine monophosphate (cAMP) reduced cellular proliferation, migration, and vascular endothelial growth factor receptor expression and induced the antiangiogenic protein calreticulin. Whereas NK-B initiated certain responses, other activities required additional stimuli that increase cAMP. Although NK-B is a neurotransmitter/ neuromodulator and NK-B overexpression characterizes the pregnancy-associated disorder preeclampsia, NK-B had not been linked to vascular remodeling. These results establish a conserved mechanism in which NK-B instigates multiple activities that collectively oppose vascular remodeling

    Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies.

    Get PDF
    Nephron progenitor number determines nephron endowment; a reduced nephron count is linked to the onset of kidney disease. Several transcriptional regulators including Six2, Wt1, Osr1, Sall1, Eya1, Pax2, and Hox11 paralogues are required for specification and/or maintenance of nephron progenitors. However, little is known about the regulatory intersection of these players. Here, we have mapped nephron progenitor-specific transcriptional networks of Six2, Hoxd11, Osr1, and Wt1. We identified 373 multi-factor associated \u27regulatory hotspots\u27 around genes closely associated with progenitor programs. To examine their functional significance, we deleted \u27hotspot\u27 enhancer elements for Six2 and Wnt4. Removal of the distal enhancer for Six2 leads to a ~40% reduction in Six2 expression. When combined with a Six2 null allele, progeny display a premature depletion of nephron progenitors. Loss of the Wnt4 enhancer led to a significant reduction of Wnt4 expression in renal vesicles and a mildly hypoplastic kidney, a phenotype also enhanced in combination with a Wnt4 null mutation. To explore the regulatory landscape that supports proper target gene expression, we performed CTCF ChIP-seq to identify insulator-boundary regions. One such putative boundary lies between the Six2 and Six3 loci. Evidence for the functional significance of this boundary was obtained by deep sequencing of the radiation-induced Brachyrrhine (Br) mutant allele. We identified an inversion of the Six2/Six3 locus around the CTCF-bound boundary, removing Six2 from its distal enhancer regulation, but placed next to Six3 enhancer elements which support ectopic Six2 expression in the lens where Six3 is normally expressed. Six3 is now predicted to fall under control of the Six2 distal enhancer. Consistent with this view, we observed ectopic Six3 in nephron progenitors. 4C-seq supports the model for Six2 distal enhancer interactions in wild-type and Br/+ mouse kidneys. Together, these data expand our view of the regulatory genome and regulatory landscape underpinning mammalian nephrogenesis

    Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies

    Get PDF
    Nephron progenitor number determines nephron endowment; a reduced nephron count is linked to the onset of kidney disease. Several transcriptional regulators including Six2, Wt1, Osr1, Sall1, Eya1, Pax2, and Hox11 paralogues are required for specification and/or maintenance of nephron progenitors. However, little is known about the regulatory intersection of these players. Here, we have mapped nephron progenitor-specific transcriptional networks of Six2, Hoxd11, Osr1, and Wt1. We identified 373 multi-factor associated ‘regulatory hotspots’ around genes closely associated with progenitor programs. To examine their functional significance, we deleted ‘hotspot’ enhancer elements for Six2 and Wnt4. Removal of the distal enhancer for Six2 leads to a ~40% reduction in Six2 expression. When combined with a Six2 null allele, progeny display a premature depletion of nephron progenitors. Loss of the Wnt4 enhancer led to a significant reduction of Wnt4 expression in renal vesicles and a mildly hypoplastic kidney, a phenotype also enhanced in combination with a Wnt4 null mutation. To explore the regulatory landscape that supports proper target gene expression, we performed CTCF ChIP-seq to identify insulator-boundary regions. One such putative boundary lies between the Six2 and Six3 loci. Evidence for the functional significance of this boundary was obtained by deep sequencing of the radiation-induced Brachyrrhine (Br) mutant allele. We identified an inversion of the Six2/Six3 locus around the CTCF-bound boundary, removing Six2 from its distal enhancer regulation, but placed next to Six3 enhancer elements which support ectopic Six2 expression in the lens where Six3 is normally expressed. Six3 is now predicted to fall under control of the Six2 distal enhancer. Consistent with this view, we observed ectopic Six3 in nephron progenitors. 4C-seq supports the model for Six2 distal enhancer interactions in wild-type and Br/+ mouse kidneys. Together, these data expand our view of the regulatory genome and regulatory landscape underpinning mammalian nephrogenesis

    Filopodia: The Cellular Quills of Hedgehog Signaling?

    Get PDF
    Reporting in Nature, Sanders et al. (2013) implicate filopodial projections in Sonic hedgehog (Shh) patterning of the limb. Actin-based filopodia transport Shh from producing cells, while filopodia of responding cells bear Cdon and Boc: coreceptors in the Shh pathway. These findings suggest a new mechanism of ligand movement and transmission

    The development of archosaurian first-generation teeth in a chicken mutant

    No full text
    Modern birds do not have teeth. Rather, they develop a specialized keratinized structure, called the rhamphotheca, that covers the mandible, maxillae, and premaxillae. Although recombination studies have shown that the avian epidermis can respond to tooth-inductive cues from mouse or lizard oral mesenchyme and participate in tooth formation [1, 2], attempts to initiate tooth development de novo in birds have failed. Here, we describe the formation of teeth in the talpid2 chicken mutant, including the developmental processes and early molecular changes associated with the formation of teeth. Additionally, we show recapitulation of the early events seen in talpid 2 after in vivo activation of β-catenin in wild-type embryos. We compare the formation of teeth in the talpid2 mutant with that in the alligator and show the formation of decidedly archosaurian (crocodilian) first-generation teeth in an avian embryo. The formation of teeth in the mutant is coupled with alterations in the specification of the oral/aboral boundary of the jaw. We propose an epigenetic model of the developmental modification of dentition in avian evolution; in this model, changes in the relative position of a lateral signaling center over competent odontogenic mesenchyme led to loss of teeth in avians while maintaining tooth developmental potential. ©2006 Elsevier Ltd All rights reserved

    Downregulation of Grem1 expression in the distal limb mesoderm is a necessary precondition for phalanx development

    No full text
    [Background]: The phalanges are the final skeletal elements to form in the vertebrate limb and their identity is regulated by signaling at the phalanx forming region (PFR) located at the tip of the developing digit ray. Here, we seek to explore the relationship between PFR activity and phalanx morphogenesis, which define the most distal limb skeletal elements, and signals associated with termination of limb outgrowth. [Results]: As Grem1 is extinguished in the distal chick limb mesoderm, the chondrogenesis marker Aggrecan is up-regulated in the metatarsals and phalanges. Fate mapping confirms that subridge mesoderm cells contribute to the metatarsal and phalanges when subridge Grem1 is down-regulated. Grem1 overexpression specifically blocks chick phalanx development by inhibiting PFR activity. PFR activity and digit development are also disrupted following overexpression of a Gli3 repressor, which results in Grem1 expression in the distal limb and downregulation of Bmpr1b. [Conclusions]: Based on expression and fate mapping studies, we propose that downregulation of Grem1 in the distal limb marks the transition from metatarsal to phalanx development. This suggests that downregulation of Grem1 in the distal limb mesoderm is necessary for phalanx development. Grem1 downregulation allows for full PFR activity and phalanx progenitor cell commitment to digit fate.National Institute of Child Health and Human Development, Grant/Award Number: HD03255

    Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies.

    No full text
    Nephron progenitor number determines nephron endowment; a reduced nephron count is linked to the onset of kidney disease. Several transcriptional regulators including Six2, Wt1, Osr1, Sall1, Eya1, Pax2, and Hox11 paralogues are required for specification and/or maintenance of nephron progenitors. However, little is known about the regulatory intersection of these players. Here, we have mapped nephron progenitor-specific transcriptional networks of Six2, Hoxd11, Osr1, and Wt1. We identified 373 multi-factor associated 'regulatory hotspots' around genes closely associated with progenitor programs. To examine their functional significance, we deleted 'hotspot' enhancer elements for Six2 and Wnt4. Removal of the distal enhancer for Six2 leads to a ~40% reduction in Six2 expression. When combined with a Six2 null allele, progeny display a premature depletion of nephron progenitors. Loss of the Wnt4 enhancer led to a significant reduction of Wnt4 expression in renal vesicles and a mildly hypoplastic kidney, a phenotype also enhanced in combination with a Wnt4 null mutation. To explore the regulatory landscape that supports proper target gene expression, we performed CTCF ChIP-seq to identify insulator-boundary regions. One such putative boundary lies between the Six2 and Six3 loci. Evidence for the functional significance of this boundary was obtained by deep sequencing of the radiation-induced Brachyrrhine (Br) mutant allele. We identified an inversion of the Six2/Six3 locus around the CTCF-bound boundary, removing Six2 from its distal enhancer regulation, but placed next to Six3 enhancer elements which support ectopic Six2 expression in the lens where Six3 is normally expressed. Six3 is now predicted to fall under control of the Six2 distal enhancer. Consistent with this view, we observed ectopic Six3 in nephron progenitors. 4C-seq supports the model for Six2 distal enhancer interactions in wild-type and Br/+ mouse kidneys. Together, these data expand our view of the regulatory genome and regulatory landscape underpinning mammalian nephrogenesis

    The development of archosaurian first-generation teeth in a chicken mutant

    Get PDF
    SummaryModern birds do not have teeth. Rather, they develop a specialized keratinized structure, called the rhamphotheca, that covers the mandible, maxillae, and premaxillae. Although recombination studies have shown that the avian epidermis can respond to tooth-inductive cues from mouse or lizard oral mesenchyme and participate in tooth formation [1, 2], attempts to initiate tooth development de novo in birds have failed. Here, we describe the formation of teeth in the talpid2 chicken mutant, including the developmental processes and early molecular changes associated with the formation of teeth. Additionally, we show recapitulation of the early events seen in talpid2 after in vivo activation of β-catenin in wild-type embryos. We compare the formation of teeth in the talpid2 mutant with that in the alligator and show the formation of decidedly archosaurian (crocodilian) first-generation teeth in an avian embryo. The formation of teeth in the mutant is coupled with alterations in the specification of the oral/aboral boundary of the jaw. We propose an epigenetic model of the developmental modification of dentition in avian evolution; in this model, changes in the relative position of a lateral signaling center over competent odontogenic mesenchyme led to loss of teeth in avians while maintaining tooth developmental potential
    corecore