2 research outputs found

    The TPR-containing domain within Est1 homologs exhibits species-specific roles in telomerase interaction and telomere length homeostasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The first telomerase-associated protein (Est1) was isolated in yeast due to its essential role in telomere maintenance. The human counterparts EST1A, EST1B, and EST1C perform diverse functions in nonsense-mediated mRNA decay (NMD), telomere length homeostasis, and telomere transcription. Although Est1 and EST1A/B interact with the catalytic subunit of yeast and human telomerase (Est2 and TERT, respectively), the molecular determinants of these interactions have not been elaborated fully.</p> <p>Results</p> <p>To investigate the functional conservation of the EST1 protein family, we performed protein-protein interaction mapping and structure-function analysis. The domain in hEST1A most conserved between species, containing a TPR (tricotetrapeptide repeat), was sufficient for interaction of hEST1A with multiple fragments of hTERT including the N-terminus. Two mutations within the hTERT N-terminus that perturb <it>in vivo </it>function (NAAIRS<sub>92</sub>, NAAIRS<sub>122</sub>) did not affect this protein interaction. ScEst1 hybrids containing the TPR of hEST1A, hEST1B, or hEST1C were expressed in yeast strains lacking <it>EST1</it>, yet they failed to complement senescence. Point mutations within and outside the cognate ScEst1 TPR, chosen to disrupt a putative protein interaction surface, resulted in telomere lengthening or shortening without affecting recruitment to telomeres.</p> <p>Conclusions</p> <p>These results identify a domain encompassing the TPR of hEST1A as an hTERT interaction module. The TPR of <it>S. cerevisiae </it>Est1 is required for telomerase-mediated telomere length maintenance in a manner that appears separable from telomere recruitment. Discrete residues in or adjacent to the TPR of Est1 also regulate telomere length homeostasis.</p
    corecore