21 research outputs found
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
The Theory of Brown Dwarfs and Extrasolar Giant Planets
Straddling the traditional realms of the planets and the stars, objects below
the edge of the main sequence have such unique properties, and are being
discovered in such quantities, that one can rightly claim that a new field at
the interface of planetary science and and astronomy is being born. In this
review, we explore the essential elements of the theory of brown dwarfs and
giant planets, as well as of the new spectroscopic classes L and T. To this
end, we describe their evolution, spectra, atmospheric compositions, chemistry,
physics, and nuclear phases and explain the basic systematics of
substellar-mass objects across three orders of magnitude in both mass and age
and a factor of 30 in effective temperature. Moreover, we discuss the
distinctive features of those extrasolar giant planets that are irradiated by a
central primary, in particular their reflection spectra, albedos, and transits.
Aspects of the latest theory of Jupiter and Saturn are also presented.
Throughout, we highlight the effects of condensates, clouds, molecular
abundances, and molecular/atomic opacities in brown dwarf and giant planet
atmospheres and summarize the resulting spectral diagnostics. Where possible,
the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for
publication in the Reviews of Modern Physics. 30 figures are color. Most of
the figures are in GIF format to reduce the overall size. The full version
with figures can also be found at:
http://jupiter.as.arizona.edu/~burrows/papers/rm
KELT-25 b and KELT-26 b: A Hot Jupiter and a Substellar Companion Transiting Young A Stars Observed by TESS
We present the discoveries of KELT-25 b (TIC 65412605, TOI-626.01) and KELT-26 b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A stars. The transit signals were initially detected by the KELT survey and subsequently confirmed by Transiting Exoplanet Survey Satellite (TESS) photometry. KELT-25 b is on a 4.40 day orbit around the V = 9.66 star CD-24 5016 (Teff=8280-180+440 K, M ∗ = 2.18-0.11+0.12 M o˙), while KELT-26 b is on a 3.34 day orbit around the V = 9.95 star HD 134004 (Teff = 8640-240+500 K, M ∗ = 1.93-0.16+0.14 M o˙), which is likely an Am star. We have confirmed the substellar nature of both companions through detailed characterization of each system using ground-based and TESS photometry, radial velocity measurements, Doppler tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of R P = 1.64-0.043+0.039 R J and a 3σ upper limit on the companion's mass of ∼64 M J. For KELT-26 b, we infer a planetary mass and radius of M P = 1.41-0.51+0.43MJ and R P = 1.94-0.058+0.060 R J. From Doppler tomographic observations, we find KELT-26 b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the TESS data. KELT-25 b appears to be in a well-aligned, prograde orbit, and the system is likely a member of the cluster Theia 449
TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images
We present the discovery and characterization of five hot and warm Jupiters - TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960) - based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (R P = 1.01-1.77 R J) and have masses that range from 0.85 to 6.33 M J. The host stars of these systems have F and G spectral types (5595 ≤ T eff ≤ 6460 K) and are all relatively bright (9.5 1.7 R J, possibly a result of its host star's evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.31-0.30+0.28 M J and a statistically significant, nonzero orbital eccentricity of e = 0.074-0.022+0.021. This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA's TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals
Funerary Pithoi in Bronze Age Crete: Their Introduction and Significance at the Threshold of Minoan Palatial Society
Toward the end of the third millennium B.C.E., Minoan funerary customs changed, and people began to favor the use of clay receptacles-pithoi or larnakes-for the bodies of the dead. This article offers a comprehensive study of the funerary pithoi of the period, comprising a review of the available material and its classification, distribution, and dating, the relation of container to tomb types, and the specific use of pithoi within funerary ritual. It also assesses the importance of pithoi as an investment in terms of the material wealth that they represent and the knowledge of the complex techniques of handling dead bodies that they require. Finally, it examines the symbolic connotations of the pithos and argues that its wide adoption was part of a general turn toward the concept of the regeneration of life. This concept shifted the emphasis of the funerary realm toward the social dimension-namely, toward the reallocation of the roles and resources of the dead among the living. Such a shift helped people come to terms with contemporary social reality and shaped the agency of emerging elites, which led to the establishment of the first Minoan palaces and transformed Crete from a series of kin-based communities to a group of proto-states
Neutrophil Chemotaxis Defect in IgA Deficiency Evaluated by Migration Agarose Method
The chemotactic and random mobility functions of twelve selectively IgA-deficient patients were evaluated by a method using agarose gel. A severe polymorphonuclear cellular chemotactic defect was found in ten out of twelve patients, but only five of them also showed a marked associated impairment of random locomotory function. Futhermore, in one subject, levamisole therapy resulted in a dramatic improvement of both chemotactic and random mobility functions. These results are discussed in the paper with respect to the possible pathogenetic implications