3,522 research outputs found
A Temperature and Abundance Retrieval Method for Exoplanet Atmospheres
We present a new method to retrieve molecular abundances and temperature
profiles from exoplanet atmosphere photometry and spectroscopy. We run millions
of 1D atmosphere models in order to cover the large range of allowed parameter
space, and present error contours in the atmospheric properties, given the
data. In order to run such a large number of models, we have developed a
parametric pressure-temperature (P-T) profile coupled with line-by-line
radiative transfer, hydrostatic equilibrium, and energy balance, along with
prescriptions for non-equilibrium molecular composition and energy
redistribution. We apply our temperature and abundance retrieval method to the
atmospheres of two transiting exoplanets, HD 189733b and HD 209458b, which have
the best available Spitzer and HST observations. For HD 189733b, we find
efficient day-night redistribution of energy in the atmosphere, and molecular
abundance constraints confirming the presence of H2O, CO, CH4, and CO2. For HD
209458b, we confirm and constrain the day-side thermal inversion in an average
1D temperature profile. We also report independent detections of HO, CO,
CH and CO on the dayside of HD 209458b, based on six-channel Spitzer
photometry. We report constraints for HD 189733b due to individual data sets
separately; a few key observations are variable in different data sets at
similar wavelengths. Moreover, a noticeably strong carbon dioxide absorption in
one data set is significantly weaker in another. We must, therefore,
acknowledge the strong possibility that the atmosphere is variable, both in its
energy redistribution state and in the chemical abundances.Comment: 20 pages in emulateapj format, 11 figures. Final version, after proof
correction
A Framework for Quantifying the Degeneracies of Exoplanet Interior Compositions
Several transiting super-Earths are expected to be discovered in the coming
few years. While tools to model the interior structure of transiting planets
exist, inferences about the composition are fraught with ambiguities. We
present a framework to quantify how much we can robustly infer about
super-Earth and Neptune-size exoplanet interiors from radius and mass
measurements. We introduce quaternary diagrams to illustrate the range of
possible interior compositions for planets with four layers (iron core,
silicate mantles, water layers, and H/He envelopes). We apply our model to
CoRoT-7b, GJ 436b, and HAT-P-11b. Interpretation of planets with H/He envelopes
is limited by the model uncertainty in the interior temperature, while for
CoRoT-7b observational uncertainties dominate. We further find that our planet
interior model sharpens the observational constraints on CoRoT-7b's mass and
radius, assuming the planet does not contain significant amounts of water or
gas. We show that the strength of the limits that can be placed on a
super-Earth's composition depends on the planet's density; for similar
observational uncertainties, high-density super-Mercuries allow the tightest
composition constraints. Finally, we describe how techniques from Bayesian
statistics can be used to take into account in a formal way the combined
contributions of both theoretical and observational uncertainties to
ambiguities in a planet's interior composition. On the whole, with only a mass
and radius measurement an exact interior composition cannot be inferred for an
exoplanet because the problem is highly underconstrained. Detailed quantitative
ranges of plausible compositions, however, can be found.Comment: 20 pages, 10 figures, published in Ap
Theoretical uncertainty in baryon oscillations
We discuss the systematic uncertainties in the recovery of dark energy
properties from the use of baryon acoustic oscillations as a standard ruler. We
demonstrate that while unknown relativistic components in the universe prior to
recombination would alter the sound speed, the inferences for dark energy from
low-redshift surveys are unchanged so long as the microwave background
anisotropies can measure the redshift of matter-radiation equality, which they
can do to sufficient accuracy. The mismeasurement of the radiation and matter
densities themselves (as opposed to their ratio) would manifest as an incorrect
prediction for the Hubble constant at low redshift. In addition, these
anomalies do produce subtle but detectable features in the microwave
anisotropies.Comment: 4 pages, REVTeX, 1 figure. Submitted to PR
Changing Face of the Extrasolar Giant Planet, HD 209458b
High-resolution atmospheric flow simulations of the tidally-locked extrasolar
giant planet, HD 209458b, show large-scale spatio-temporal variability. This is
in contrast to the simple, permanent day/night (i.e., hot/cold) picture. The
planet's global circulation is characterized by a polar vortex in motion around
each pole and a banded structure corresponding to ~3 broad zonal (east-west)
jets. For very strong jets, the circulation-induced temperature difference
between moving hot and cold regions can reach up to ~1000 K, suggesting that
atmospheric variability could be observed in the planet's spectral and
photometric signatures.Comment: 6 pages, 1 ps figure, 2 low-res color figures (JPEG). Figure 3
updated. Contact authors for hi-res versions of color figures. Accepted for
publication in ApJ
The Atmospheres of Extrasolar Planets
In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres
Pupil remapping for high contrast astronomy: results from an optical testbed
The direct imaging and characterization of Earth-like planets is among the
most sought-after prizes in contemporary astrophysics, however current optical
instrumentation delivers insufficient dynamic range to overcome the vast
contrast differential between the planet and its host star. New opportunities
are offered by coherent single mode fibers, whose technological development has
been motivated by the needs of the telecom industry in the near infrared. This
paper presents a new vision for an instrument using coherent waveguides to
remap the pupil geometry of the telescope. It would (i) inject the full pupil
of the telescope into an array of single mode fibers, (ii) rearrange the pupil
so fringes can be accurately measured, and (iii) permit image reconstruction so
that atmospheric blurring can be totally removed. Here we present a laboratory
experiment whose goal was to validate the theoretical concepts underpinning our
proposed method. We successfully confirmed that we can retrieve the image of a
simulated astrophysical object (in this case a binary star) though a pupil
remapping instrument using single mode fibers.Comment: Accepted in Optics Expres
- …
