10 research outputs found

    Angiogenesis is present in experimental autoimmune encephalomyelitis and pro-angiogenic factors are increased in multiple sclerosis lesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis is a common finding in chronic inflammatory diseases; however, its role in multiple sclerosis (MS) is unclear. Central nervous system lesions from both MS and experimental autoimmune encephalomyelitis (EAE), the animal model of MS, contain T cells, macrophages and activated glia, which can produce pro-angiogenic factors. Previous EAE studies have demonstrated an increase in blood vessels, but differences between the different phases of disease have not been reported. Therefore we examined angiogenic promoting factors in MS and EAE lesions to determine if there were changes in blood vessel density at different stages of EAE.</p> <p>Methods</p> <p>In this series of experiments we used a combination of vascular casting, VEGF ELISA and immunohistochemistry to examine angiogenesis in experimental autoimmune encephalomyelitis (EAE). Using immunohistochemistry we also examined chronic active MS lesions for angiogenic factors.</p> <p>Results</p> <p>Vascular casting and histological examination of the spinal cord and brain of rats with EAE demonstrated that the density of patent blood vessels increased in the lumbar spinal cord during the relapse phase of the disease (p < 0.05). We found an increased expression of VEGF by inflammatory cells and a decrease in the recently described angiogenesis inhibitor meteorin. Examination of chronic active human MS tissues demonstrated glial expression of VEGF and glial and blood vessel expression of the pro-angiogenic receptor VEGFR2. There was a decreased expression of VEGFR1 in the lesions compared to normal white matter.</p> <p>Conclusions</p> <p>These findings reveal that angiogenesis is intimately involved in the progression of EAE and may have a role in MS.</p

    MEN4, the MEN1 mimicker : a case series of three phenotypically heterogenous patients with unique CDKN1B mutations

    No full text
    Context: Germline CDKN1B pathogenic variants result in multiple endocrine neoplasia type 4 (MEN4), an autosomal dominant hereditary tumor syndrome variably associated with primary hyperparathyroidism, pituitary adenoma, and duodenopancreatic neuroendocrine tumors. Objective: To report the phenotype of 3 unrelated cases each with a unique germline CDKN1B variant (of which 2 are novel) and compare these cases with those described in the current literature. Design/Methods: Three case studies, including clinical presentation, germline, and tumor genetic analysis and family history. Setting: Two tertiary University Hospitals in Sydney, New South Wales, and 1 tertiary University Hospital in Canberra, Australian Capital Territory, Australia. Outcome: Phenotype of the 3 cases and their kindred; molecular analysis and tumor p27kip1 immunohistochemistry. Results: Family A: The proband developed multiglandular primary hyperparathyroidism, a microprolactinoma and a multifocal nonfunctioning duodenopancreatic neuroendocrine tumor. Family B: The proband was diagnosed with primary hyperparathyroidism from a single parathyroid adenoma. Family C: The proband was diagnosed with a nonfunctioning pituitary microadenoma and ectopic Cushing's syndrome from an atypical thymic carcinoid tumor. Germline sequencing in each patient identified a unique variant in CDKN1B, 2 of which are novel (c.179G >A, p.Trp60*; c.475G >A, p.Asp159Asn) and 1 previously reported (c.374_375delCT, p.Ser125*). Conclusions: Germline CDKN1B pathogenic variants cause the syndrome MEN4. The phenotype resulting from the 3 pathogenic variants described in this series highlights the heterogenous nature of this syndrome, ranging from isolated primary hyperparathyroidism to the full spectrum of endocrine manifestations. We report the first described cases of a prolactinoma and an atypical thymic carcinoid tumor in MEN4

    Multiple Endocrine Tumors Associated with Germline MAX Mutations:Multiple Endocrine Neoplasia Type 5?

    No full text
    Context: Pathogenic germline MAX variants are associated with pheochromocytoma and paraganglioma (PPGL), pituitary neuroendocrine tumors and, possibly, other endocrine and nonendocrine tumors. Objective: To report 2 families with germline MAX variants, pheochromocytomas (PCs) and multiple other tumors. Methods: Clinical, genetic, immunohistochemical, and functional studies at University hospitals in Australia on 2 families with germline MAX variants undergoing usual clinical care. The main outcome measures were phenotyping; germline and tumor sequencing; immunohistochemistry of PC and other tumors; functional studies of MAX variants. Results: Family A has multiple individuals with PC (including bilateral and metastatic disease) and 2 children (to date, without PC) with neuroendocrine tumors (paravertebral ganglioneuroma and abdominal neuroblastoma, respectively). One individual has acromegaly; immunohistochemistry of PC tissue showed positive growth hormone-releasing hormone staining. Another individual with previously resected PCs has pituitary enlargement and elevated insulin-like growth factor (IGF-1). A germline MAX variant (c.200C>A, p.Ala67Asp) was identified in all individuals with PC and both children, with loss of heterozygosity in PC tissue. Immunohistochemistry showed loss of MAX staining in PCs and other neural crest tumors. In vitro studies confirmed the variant as loss of function. In Family B, the proband has bilateral and metastatic PC, prolactin-producing pituitary tumor, multigland parathyroid adenomas, chondrosarcoma, and multifocal pulmonary adenocarcinomas. A truncating germline MAX variant (c.22G>T, p.Glu8∗) was identified. Conclusion: Germline MAX mutations are associated with PCs, ganglioneuromas, neuroblastomas, pituitary neuroendocrine tumors, and, possibly, parathyroid adenomas, as well as nonendocrine tumors of chondrosarcoma and lung adenocarcinoma, suggesting MAX is a novel multiple endocrine neoplasia gene.</p

    Characterization of [(3)H]-CGP54626A binding to heterodimeric GABA(B) receptors stably expressed in mammalian cells

    No full text
    1. Functional human GABA(B(1a,2)) and GABA(B(1b,2)) receptors have been stably expressed in mammalian CHO K1 cells. 2. Detailed characterization of GABA(B) ligand binding at each of the receptors has been compared using [(3)H]-CGP54626A. In cell membranes fractions, [(3)H]-CGP54626A bound to a single site with a K(D) of 1.51±1.12 nM, B(max) of 2.02±0.17 pmoles mg protein(−1) and 0.86±0.20 nM, B(max) of 5.19±0.57 pmoles mg protein(−1) for GABA(B(1a,2)) and GABA(B(1b,2)) respectively. 3. In competition binding assays the rank order was identical for both GABA(B) receptors. For known GABA(B) agonists the rank order was CGP27492>SKF97541=CGP46381>GABA>Baclofen and for GABA(B) antagonists the rank order was CGP54262A>CGP55845>CGP52432>SCH 50911>CGP51176>CGP36742=CGP35348 ⩾2-OH Saclofen ⩾ABPA. 4. The allosteric effect of calcium cations was also investigated. The effect of removal of CaCl(2) from the binding assay conditions was ligand dependent to either cause a decrease in ligand affinity or to have no significant effect. However, these effects were similar for both GABA(B) receptors. 5. A whole cell, scintillation proximity binding assay was used to determine agonist affinity at exclusively heterodimeric GABA(B) receptors. In competition assays, the rank order was the same for both GABA(B(1a,2)) and GABA(B(1b,2)) and consistent with that seen with cell membrane fractions. 6. These data suggest that, in terms of ligand binding, the currently identified isoforms of the GABA(B) receptor are pharmacologically indistinguishable
    corecore