59 research outputs found
Creation of a ternary complex between a crown ether, 4-aminobenzoic acid and 3,5-dinitrobenzoic acid
YesThe creation of ternary multi-component crystals through the introduction of 18-crown-6 to direct the hydrogen-bonding motifs of the other molecular components was investigated for 3,5-dinitrobenzoic acid (3,5-dnba) with 4-aminobenzoic acid (4-aba). The creation of a binary complex between 18-crown-6 and 4-aba (C12H24O6·2C7H7NO2)2 and a ternary salt between 3,5-dnba, 18-crown-6 and 4-aba (C12H24O6·C7H8NO2+·C7H3N2O6−·C7H4N2O6) were confirmed by single-crystal structure determination. In both structures, the amino molecules bind to the crown ether through N—H...O hydrogen bonds, leaving available only a single O atom site on the crown with restricted geometry to potentially accept a hydrogen bond from 3,5-dnba. While 3,5-dnba and 4-aba form a binary co-crystal containing neutral molecules, the shape-selective nature of 18-crown-6 preferentially binds protonated amino molecules, thereby leading to the formation of the ternary salt, despite the predicted low concentration of the protonated species in the crystallizing solution. Thus, through the choice of crown ether it may be possible to control both location and nature of the available bonding sites for the designed creation of ternary crystals
Rapid preparation of pharmaceutical co-crystals with thermal ink-jet printing
Thermal ink-jet printing (TIJP) is shown to be a rapid (minutes) method with which to prepare pharmaceutical co-crystals; co-crystals were identified in all cases where the co-formers could be dissolved in water and/or water/ethanol solutions
Structural Motifs in Salts of Sulfathiazole: Implications for Design of Salt Forms in Pharmaceuticals APIs
YesThe creation of salts is a frequently used approach for the modification of physicochemical properties of an active pharmaceutical ingredient. Despite the frequency of application, there has been little research into the structural-property relationships of the final material and the nature of the counterion present. This work reports on five new salts of sulfathiazole and compares the energetics of the intermolecular interactions with variation in the crystal packing motifs
Thermal Behavior of Benzoic Acid/Isonicotinamide Binary Cocrystals
© 2015 American Chemical Society. A comprehensive study of the thermal behavior of the 1:1 and 2:1 benzoic acid/isonicotinamide cocrystals is reported. The 1:1 material shows a simple unit cell expansion followed by melting upon heating. The 2:1 crystal exhibits more complex behavior. Its unit cell first expands upon heating, as a result of C-H⋯π interactions being lengthened. It then is converted into the 1:1 crystal, as demonstrated by significant changes in its X-ray diffraction pattern. The loss of 1 equiv of benzoic acid is confirmed by thermogravimetric analysis-mass spectrometry. Hot stage microscopy confirms that, as intuitively expected, the transformation begins at the crystal surface. The temperature at which conversion occurs is highly dependent on the sample mass and geometry, being reduced when the sample is under a gas flow or has a greater exposed surface area but increased when the heating rate is elevated. (Figure Presented)
Mixed-linker approach in designing porous zirconium-based metal–organic frameworks with high hydrogen storage capacity
YesThree highly porous Zr(IV)-based metal–organic frameworks, UBMOF-8, UBMOF-9, and UBMOF-31, were synthesized by using 2,2′-diamino-4,4′-stilbenedicarboxylic acid, 4,4′-stilbenedicarboxylic acid, and combination of both linkers, respectively. The mixed-linker UBMOF-31 showed excellent hydrogen uptake of 4.9 wt% and high selectivity for adsorption of CO2 over N2 with high thermal stability and moderate water stability with permanent porosity and surface area of 2552 m2 g−1.University of Bath; Royal Society of Chemistry; Engineering and Physical Sciences Research Counci
Stabilisation of metastable polymorphs: the case of paracetamol form III
YesThe design of a melt synthesis of the first air-stable formulation of the metastable form III of paracetamol is derived from thermo-spectroscopic and thermo-diffraction experiments. Melt crystallisation in the presence of β-1,4-saccharides produces form III selectively and the excipients appear to act as stabilising ‘active’ templates of the metastable polymorph.This article is part of themed collection: Pharmaceutical Solids
The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report
The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument
The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report
The Habitable Exoplanet Observatory, or HabEx, has been designed to be the
Great Observatory of the 2030s. For the first time in human history,
technologies have matured sufficiently to enable an affordable space-based
telescope mission capable of discovering and characterizing Earthlike planets
orbiting nearby bright sunlike stars in order to search for signs of
habitability and biosignatures. Such a mission can also be equipped with
instrumentation that will enable broad and exciting general astrophysics and
planetary science not possible from current or planned facilities. HabEx is a
space telescope with unique imaging and multi-object spectroscopic capabilities
at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities
allow for a broad suite of compelling science that cuts across the entire NASA
astrophysics portfolio. HabEx has three primary science goals: (1) Seek out
nearby worlds and explore their habitability; (2) Map out nearby planetary
systems and understand the diversity of the worlds they contain; (3) Enable new
explorations of astrophysical systems from our own solar system to external
galaxies by extending our reach in the UV through near-IR. This Great
Observatory science will be selected through a competed GO program, and will
account for about 50% of the HabEx primary mission. The preferred HabEx
architecture is a 4m, monolithic, off-axis telescope that is
diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two
starlight suppression systems: a coronagraph and a starshade, each with their
own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information
about HabEx can be found here: https://www.jpl.nasa.gov/habex
A synthesis of carbasugar-sugar pseudodisaccharides via a cycloaddition-cycloreversion reaction of 2 H-Pyran-2-ones
Cycloaddition of 3-carbomethoxy-2H-pyran-2-one to a vinylated sugar followed by the loss of bridging CO2 from the cycloadduct affords a cyclohexadiene which can be manipulated to a carbasugar-sugar pseudodisaccharide. © 2010 American Chemical Society
Ambidentate binding in macrocyclic helicates: towards tuning secondary structure
X-Ray analysis of new helicates of CdII and PbII derived from a tetraimine macrocyclic ligand shows that the compression of the double-helical array as the size of the metal ion increases corresponds with a change in coordination mode of the ligand
- …