3,251 research outputs found

    Calibrated Surrogate Losses for Classification with Label-Dependent Costs

    Full text link
    We present surrogate regret bounds for arbitrary surrogate losses in the context of binary classification with label-dependent costs. Such bounds relate a classifier's risk, assessed with respect to a surrogate loss, to its cost-sensitive classification risk. Two approaches to surrogate regret bounds are developed. The first is a direct generalization of Bartlett et al. [2006], who focus on margin-based losses and cost-insensitive classification, while the second adopts the framework of Steinwart [2007] based on calibration functions. Nontrivial surrogate regret bounds are shown to exist precisely when the surrogate loss satisfies a "calibration" condition that is easily verified for many common losses. We apply this theory to the class of uneven margin losses, and characterize when these losses are properly calibrated. The uneven hinge, squared error, exponential, and sigmoid losses are then treated in detail.Comment: 33 pages, 7 figure

    Class Proportion Estimation with Application to Multiclass Anomaly Rejection

    Full text link
    This work addresses two classification problems that fall under the heading of domain adaptation, wherein the distributions of training and testing examples differ. The first problem studied is that of class proportion estimation, which is the problem of estimating the class proportions in an unlabeled testing data set given labeled examples of each class. Compared to previous work on this problem, our approach has the novel feature that it does not require labeled training data from one of the classes. This property allows us to address the second domain adaptation problem, namely, multiclass anomaly rejection. Here, the goal is to design a classifier that has the option of assigning a "reject" label, indicating that the instance did not arise from a class present in the training data. We establish consistent learning strategies for both of these domain adaptation problems, which to our knowledge are the first of their kind. We also implement the class proportion estimation technique and demonstrate its performance on several benchmark data sets.Comment: Accepted to AISTATS 2014. 15 pages. 2 figure

    Information Constraints and Financial Aid Policy

    Get PDF
    One justification for public support of higher education is that prospective students, particularly those from underprivileged groups, lack complete information about the costs and benefits of a college degree. Beyond financial considerations, students may also lack information about what they need to do academically to prepare for and successfully complete college. Yet until recently, college aid programs have typically paid little attention to students' information constraints, and the complexity of some programs can exacerbate the problem. This chapter describes the information problems facing prospective students as well as their consequences, drawing upon economic theory and empirical evidence.

    Query Learning with Exponential Query Costs

    Full text link
    In query learning, the goal is to identify an unknown object while minimizing the number of "yes" or "no" questions (queries) posed about that object. A well-studied algorithm for query learning is known as generalized binary search (GBS). We show that GBS is a greedy algorithm to optimize the expected number of queries needed to identify the unknown object. We also generalize GBS in two ways. First, we consider the case where the cost of querying grows exponentially in the number of queries and the goal is to minimize the expected exponential cost. Then, we consider the case where the objects are partitioned into groups, and the objective is to identify only the group to which the object belongs. We derive algorithms to address these issues in a common, information-theoretic framework. In particular, we present an exact formula for the objective function in each case involving Shannon or Renyi entropy, and develop a greedy algorithm for minimizing it. Our algorithms are demonstrated on two applications of query learning, active learning and emergency response.Comment: 15 page
    • …
    corecore