3,956 research outputs found
A New Leadership Development Model for Nursing Education
Background
Leadership competency is required throughout nursing. Students have difficulty understanding leadership as integral to education and practice. A consistent framework for nursing leadership education, strong scholarship and an evidence base are limited. Purpose
To establish an integrated leadership development model for prelicensure nursing students that recognizes leadership as a fundamental skill for nursing practice and promotes development of nursing leadership education scholarship. Method
Summarizing definitions of nursing leadership, conceptualizing leadership development capacity through reviewing trends, and synthesizing existing leadership theories through directed content analysis. Discussion
Nine leadership skills form the organizing structure for the Nursing Leadership Development Model. Leadership identity development is supported via dimensions of knowing, doing, being and context. Conclusion
The Nursing Leadership Development Model is a conceptual map offering a structure to facilitate leadership development within prelicensure nursing students, promoting student ability to internalize leadership capacity and apply leadership skills upon entry to practic
Recommended from our members
The unicorn stays in the picture : deconstructing the "chosen one" myth in the young adult fantasy film
This report covers the process of developing, writing and revising the original screenplay "Magic for Losers." When famous child wizard Daphne Grimsby is abducted by villainous foes, her loser brother Darwin must reluctantly venture into a magical world to save her. The script relies heavily on the concepts and ideas evoked from the Hero's Journey model of storytelling. I have also structured this report on the same model, as in its own way, completing a feature length screenplay is fraught with with the same trails and tribulations.Radio-Television-Fil
Evaluation of Triploid Oysters as a Tool to Assess Short- and Long-term Seafood Contamination of Oil Spill-impacted Areas
Many of the organic components of oil have the capacity to persist in the environment, bioaccumulate in tissues, and are toxic to surrounding organisms. Since the early 1970s, environmental assessment programs have utilized bivalves as monitoring tools of chemical contaminants in the marine environment. Because of their sedentary and filter-feeding habit (bioaccumulation), mussels and oysters been employed as sentinel organisms in environmental quality monitoring studies in coastal ecosystems. The use of indigenous (diploid) bivalves for biomonitoring water quality is limited during the summer months due to high stress and changes in biochemical composition induced by reproductive development. In this work caged diploid and triploid oysters were compared to one another to determine if seasonal variations in total polycyclic aromatic hydrocarbon (PAH) bioaccumulation exist between the ploidy. Variations in bioaccumulation between the two ploidy were tested using a static laboratory exposure study and a real-time field monitoring (15 months) study in Barataria Bay, Louisiana. A modified QuEChERS and dispersive solid phase extraction (dSPE) method were developed and validated for determination of PAHs in oyster tissue. Laboratory oil exposure results showed there was a significant increase of 40.0%, 45.3%, and 48.9% in total PAH content between the summer diploid and triploid oysters with the 500, 5000, and 25000 ppm exposure treatments, respectively. There was a 31.3% to 58.2% increase in total PAH content between the summer diploid oysters and remaining seasonal treatments (winter diploid and triploid) over the exposed oil treatment range (500, 5000, and 25000 ppm). Significant increases (17.2% to 33.4%) in total PAH content within the triploid oysters were observed at the Bay Jimmy field sites for the months coinciding with the spawning season (June-September) and elevated lipids levels in the diploid oysters. In contrast, triploid oysters only displayed a 4.81% to 5.43% increase in PAH content within their tissue during the winter and early spring months (November-early May). The use of triploid oysters as a biomonitoring tool is feasible for assessing environmental impacts following chemical or oil spills. A caged triploid oyster monitoring system is a viable alternative to indigenous diploid bivalves throughout the year
- …