1,918 research outputs found
One Million Years of Climate-Driven Rock Uplift Rate Variation on the Wasatch Fault Revealed by Fluvial Topography
Displacement along the Wasatch Fault, Utah, has created the Wasatch Range. Owing to its topographic prominence, location on the eastern boundary of the Basin and Range, presently active fault slip, and proximity to Utahâs largest cities, the range and fault have garnered much attention. On the 102â103 year timescale, the behavior, displacement and seismic history of the Wasatch Fault has been well categorized in order to assess seismic hazard. On the 107 year timescale, the rock uplift rate history of the Wasatch range has also been resolved using thermochronometric data, owing to its importance in inferring the history of extension in the western US. However, little data exists that bridges the gap between these two timescales. Here, we infer an approximately 1 Ma rock uplift rate history from analysis of three river networks located in the center of the range. Our recovered rock uplift rate histories evidence periodic changes to rock uplift on the Wasatch Fault, that coincide with climate driven filling and unfilling of lakes in the Bonnneville Basin. To ensure our rock uplift rate histories are robust, we use field data and previously published cosmogenic 10Be erosion rate data to tightly constrain the erodibility parameter, and investigate an appropriate value for the slope exponent of the stream power model, n. We use our river network inversion to reconcile estimates of erodibility from a number of methodologies and show that the contrast between bedrock and bedload strength is an important factor that determines erodibility
Recommended from our members
THE PHYSICAL SCALE OF THE FAR-INFRARED EMISSION IN THE MOST LUMINOUS SUBMILLIMETER GALAXIES
We present high-resolution submillimeter interferometric imaging of two of the brightest high-redshift submillimeter galaxies known: GN 20 and AzTEC1 at 0.8\u27\u27 and 0.3\u27\u27 resolution, respectively. Our dataâthe highest resolution submillimeter imaging of high-redshift sources accomplished to dateâwere collected in three different array configurations: compact, extended, and very extended. We derive angular sizes of 0.6\u27\u27 and 1.0\u27\u27 for GN 20 and 0.3\u27\u27 and 0.4\u27\u27 for AzTEC1 from modeling their visibility functions as a Gaussian and an elliptical disk, respectively. Because both sources are B-band dropouts, they likely lie within a relatively narrow redshift window around z ~ 4, which indicates their angular extent corresponds to physical scales of 4-8 and 1.5-3 kpc, respectively, for the starburst region. By way of a series of simple assumptions, we find preliminary evidence that these hyperluminous starburstsâwith star formation rates \u3e1000 M yrâ1âare radiating at or close to their Eddington limit. Should future high-resolution observations indicate that these two objects are typical of a population of high-redshift Eddington-limited starbursts, this could have important consequences for models of star formation and feedback in extreme environments
Comparison of the CDC Backpack aspirator and the Prokopack aspirator for sampling indoor- and outdoor-resting mosquitoes in southern Tanzania.
BACKGROUND\ud
\ud
Resting mosquitoes can easily be collected using an aspirating device. The most commonly used mechanical aspirator is the CDC Backpack aspirator. Recently, a simple, and low-cost aspirator called the Prokopack has been devised and proved to have comparable performance. The following study evaluates the Prokopack aspirator compared to the CDC backpack aspirator when sampling resting mosquitoes in rural Tanzania.\ud
\ud
METHODS\ud
\ud
Mosquitoes were sampled in- and outdoors of 48 typical rural African households using both aspirators. The aspirators were rotated between collectors and households in a randomized, Latin Square design. Outdoor collections were performed using artificial resting places (large barrel and car tyre), underneath the outdoor kitchen (kibanda) roof and from a drop-net. Data were analysed with generalized linear models.\ud
\ud
RESULTS\ud
\ud
The number of mosquitoes collected using the CDC Backpack and the Prokopack aspirator were not significantly different both in- and outdoors (indoors p = 0.735; large barrel p = 0.867; car tyre p = 0.418; kibanda p = 0.519). The Prokopack was superior for sampling of drop-nets due to its smaller size. The number mosquitoes collected per technician was more consistent when using the Prokopack aspirator. The Prokopack was more user-friendly: technicians preferred using the it over the CDC backpack aspirator as it weighs considerably less, retains its charge for longer and is easier to manoeuvre.\ud
\ud
CONCLUSIONS\ud
\ud
The Prokopack proved in the field to be more advantageous than the CDC Backpack aspirator. It can be self assembled using simple, low-cost and easily attainable materials. This device is a useful tool for researchers or vector-control surveillance programs operating in rural Africa, as it is far simpler and quicker than traditional means of sampling resting mosquitoes. Further longitudinal evaluations of the Prokopack aspirator versus the gold standard pyrethrum spray catch for indoor resting catches are recommended
Nanomechanical Detection of Itinerant Electron Spin Flip
Spin is an intrinsically quantum property, characterized by angular momentum.
A change in the spin state is equivalent to a change in the angular momentum or
mechanical torque. This spin-induced torque has been invoked as the intrinsic
mechanism in experiments ranging from the measurements of angular momentum of
photons g-factor of metals and magnetic resonance to the magnetization reversal
in magnetic multi-layers A spin-polarized current introduced into a nonmagnetic
nanowire produces a torque associated with the itinerant electron spin flip.
Here, we report direct measurement of this mechanical torque and itinerant
electron spin polarization in an integrated nanoscale torsion oscillator, which
could yield new information on the itinerancy of the d-band electrons. The
unprecedented torque sensitivity of 10^{-22} N m/ \sqrt{Hz} may enable
applications for spintronics, precision measurements of CP-violating forces,
untwisting of DNA and torque generating molecules.Comment: 14 pages, 4 figures. visit http://nano.bu.edu/ for related paper
Exploring the measurement of markedness and its relationship with other linguistic variables
Antonym pair members can be differentiated by each word's markedness-that distinction attributable to the presence or absence of features at morphological or semantic levels. Morphologically marked words incorporate their unmarked counterpart with additional morphs (e.g., "unlucky" vs. "lucky"); properties used to determine semantically marked words (e.g., "short" vs. "long") are less clearly defined. Despite extensive theoretical scrutiny, the lexical properties of markedness have received scant empirical study. The current paper employs an antonym sequencing approach to measure markedness: establishing markedness probabilities for individual words and evaluating their relationship with other lexical properties (e.g., length, frequency, valence). Regression analyses reveal that markedness probability is, as predicted, related to affixation and also strongly related to valence. Our results support the suggestion that antonym sequence is reflected in discourse, and further analysis demonstrates that markedness probabilities, derived from the antonym sequencing task, reflect the ordering of antonyms within natural language. In line with the Pollyanna Hypothesis, we argue that markedness is closely related to valence; language users demonstrate a tendency to present words evaluated positively ahead of those evaluated negatively if given the choice. Future research should consider the relationship of markedness and valence, and the influence of contextual information in determining which member of an antonym pair is marked or unmarked within discourse
Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere
Author Posting. © Ecological Society of America, 2011. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 9 (2011): 53â60, doi:10.1890/100014.Streams, rivers, lakes, and other inland waters are important agents in the coupling of biogeochemical cycles between continents, atmosphere, and oceans. The depiction of these roles in global-scale assessments of carbon (C) and other bioactive elements remains limited, yet recent findings suggest that C discharged to the oceans is only a fraction of that entering rivers from terrestrial ecosystems via soil respiration, leaching, chemical weathering, and physical erosion. Most of this C influx is returned to the atmosphere from inland waters as carbon dioxide (CO2) or buried in sedimentary deposits within impoundments, lakes, floodplains, and other wetlands. Carbon and mineral cycles are coupled by both erosionâdeposition processes and chemical weathering, with the latter producing dissolved inorganic C and carbonate buffering capacity that strongly modulate downstream pH, biological production of calcium-carbonate shells, and CO2 outgassing in rivers, estuaries, and coastal zones. Human activities substantially affect all of these processes.The US National Science Foundation (NSF) and
the National Oceanographic and Atmospheric Administration
(NOAA) provided funding for this work
The Glasgow Norms:Ratings of 5,500 words on nine scales
The Glasgow Norms are a set of normative ratings for 5,553 English words on nine psycholinguistic dimensions: arousal, valence, dominance, concreteness, imageability, familiarity, age of acquisition, semantic size, and gender association. The Glasgow Norms are unique in several respects. First, the corpus itself is relatively large, while simultaneously providing norms across a substantial number of lexical dimensions. Second, for any given subset of words, the same participants provided ratings across all nine dimensions (33 participants/word, on average). Third, two novel dimensionsâsemantic size and gender associationâare included. Finally, the corpus contains a set of 379 ambiguous words that are presented either alone (e.g., toast) or with information that selects an alternative sense (e.g., toast (bread), toast (speech)). The relationships between the dimensions of the Glasgow Norms were initially investigated by assessing their correlations. In addition, a principal component analysis revealed four main factors, accounting for 82% of the variance (Visualization, Emotion, Salience, and Exposure). The validity of the Glasgow Norms was established via comparisons of our ratings to 18 different sets of current psycholinguistic norms. The dimension of size was tested with megastudy data, confirming findings from past studies that have explicitly examined this variable. Alternative senses of ambiguous words (i.e., disambiguated forms), when discordant on a given dimension, seemingly led to appropriately distinct ratings. Informal comparisons between the ratings of ambiguous words and of their alternative senses showed different patterns that likely depended on several factors (the number of senses, their relative strengths, and the rating scales themselves). Overall, the Glasgow Norms provide a valuable resourceâin particular, for researchers investigating the role of word recognition in language comprehension
10 simple rules to create a serious game, illustrated with examples from structural biology
Serious scientific games are games whose purpose is not only fun. In the
field of science, the serious goals include crucial activities for scientists:
outreach, teaching and research. The number of serious games is increasing
rapidly, in particular citizen science games, games that allow people to
produce and/or analyze scientific data. Interestingly, it is possible to build
a set of rules providing a guideline to create or improve serious games. We
present arguments gathered from our own experience ( Phylo , DocMolecules ,
HiRE-RNA contest and Pangu) as well as examples from the growing literature on
scientific serious games
AMI-CL J0300+2613: A Galactic anomalous-microwave-emission ring masquerading as a galaxy cluster
The Arcminute Microkelvin Imager (AMI) carried out a blind survey for galaxy
clusters via their Sunyaev-Zel'dovich effect decrements between 2008 and 2011.
The first detection, known as AMI-CL J0300+2613, has been reobserved with AMI
equipped with a new digital correlator with high dynamic range. The combination
of the new AMI data and more recent high-resolution sub-mm and infra-red maps
now shows the feature in fact to be a ring of positive dust-correlated Galactic
emission, which is likely to be anomalous microwave emission (AME). If so, this
is the first completely blind detection of AME at arcminute scales
Fatal Prion Disease in a Mouse Model of Genetic E200K Creutzfeldt-Jakob Disease
Genetic prion diseases are late onset fatal neurodegenerative disorders linked to pathogenic mutations in the prion protein-encoding gene, PRNP. The most prevalent of these is the substitution of Glutamate for Lysine at codon 200 (E200K), causing genetic Creutzfeldt-Jakob disease (gCJD) in several clusters, including Jews of Libyan origin. Investigating the pathogenesis of genetic CJD, as well as developing prophylactic treatments for young asymptomatic carriers of this and other PrP mutations, may well depend upon the availability of appropriate animal models in which long term treatments can be evaluated for efficacy and toxicity. Here we present the first effective mouse model for E200KCJD, which expresses chimeric mouse/human (TgMHu2M) E199KPrP on both a null and a wt PrP background, as is the case for heterozygous patients and carriers. Mice from both lines suffered from distinct neurological symptoms as early as 5â6 month of age and deteriorated to death several months thereafter. Histopathological examination of the brain and spinal cord revealed early gliosis and age-related intraneuronal deposition of disease-associated PrP similarly to human E200K gCJD. Concomitantly we detected aggregated, proteinase K resistant, truncated and oxidized PrP forms on immunoblots. Inoculation of brain extracts from TgMHu2ME199K mice readily induced, the first time for any mutant prion transgenic model, a distinct fatal prion disease in wt mice. We believe that these mice may serve as an ideal platform for the investigation of the pathogenesis of genetic prion disease and thus for the monitoring of anti-prion treatments
- âŠ