1,379 research outputs found

    PROBABILITY OF TREE SEEDLING ESTABLISHMENT CHANGES ACROSS A FOREST–OLD FIELD EDGE GRADIENT

    Get PDF
    Forest edges affect many aspects of plant communities, causing changes in microclimate, species composition, and community structure. However, the direct role of edges in regulating forest regeneration is relatively unknown. The pattern of tree establishment across a forest–old field edge was experimentally examined to determine the response of three tree species to the edge gradient. We placed 100 1-m2 plots in a 90 3 90 m grid that began 30 m inside the forest, extended across the edge, and ended at 60 m into the old field. Into each plot, we planted seeds of Acer rubrum, Acer saccharum, and Quercus palustris. Emergence increased with distance into the field for both A. saccharum and Q. palustris. Emergence for A. rubrum increased from forest to field, reaching a maximum near 20 m into the field, and then declined with further distance. Nearly all A. rubrum seedlings died shortly after emergence. Survival of A. saccharum increased with distance into the old field, while survivorship of Q. palustris did not respond to the edge gradient. Establishment probabilities increased with distance into the old field for both A. saccharum and Q. palustris. Growth of Q. palustris and allocation patterns of A. saccharum also varied across the edge gradient. These results suggest that edges have complex, speciesspecific effects on tree establishment and growth that can influence the spatial pattern and species composition of regenerating forests

    Intra- and interspecies interactions between prion proteins and effects of mutations and polymorphisms

    Get PDF
    Recently, crystallization of the prion protein in a dimeric form was reported. Here we show that native soluble homogenous FLAG-tagged prion proteins from hamster, man and cattle expressed in the baculovirus system are predominantly dimeric. The PrP/PrP interaction was confirmed in Semliki Forest virus-RNA transfected BHK cells co-expressing FLAG- and oligohistidine-tagged human PrP. The yeast two-hybrid system identified the octarepeat region and the C-terminal structured domain (aa90-aa230) of PrP as PrP/PrP interaction domains. Additional octarepeats identified in patients suffering from fCJD reduced (wtPrP versus PrP+90R) and completely abolished (PrP+90R versus PrP+90R) the PrP/PrP interaction in the yeast two-hybrid system. In contrast, the Met/Val polymorphism (aa129), the GSS mutation Pro102Leu and the FFI mutation Asp178Asn did not affect PrP/PrP interactions. Proof of interactions between human or sheep and bovine PrP, and sheep and human PrP, as well as lack of interactions between human or bovine PrP and hamster PrP suggest that interspecies PrP interaction studies in the yeast two-hybrid system may serve as a rapid pre-assay to investigate species barriers in prion diseases

    Seismic data reveal eastern Black Sea Basin structure

    Get PDF
    Rifted continental margins are formed by progressive extension of the lithosphere. The development of these margins plays an integral role in the plate tectonic cycle, and an understanding of the extensional process underpins much hydrocarbon exploration. A key issue is whether the lithosphere extends uniformly, or whether extension varies\ud with depth. Crustal extension may be determined using seismic techniques. Lithospheric extension may be inferred from the waterloaded subsidence history, determined from\ud the pattern of sedimentation during and after rifting. Unfortunately, however, many rifted margins are sediment-starved, so the subsidence history is poorly known.\ud To test whether extension varies between the crust and the mantle, a major seismic experiment was conducted in February–March 2005 in the eastern Black Sea Basin (Figure 1), a deep basin where the subsidence history is recorded\ud by a thick, post-rift sedimentary sequence. The seismic data from the experiment indicate the presence of a thick, low-velocity zone, possibly representing overpressured sediments. They also indicate that the basement and\ud Moho in the center of the basin are both several kilometers shallower than previously inferred. These initial observations may have considerable impact on thermal models of the petroleum system in the basin. Understanding\ud the thermal history of potential source rocks is key to reducing hydrocarbon exploration risk. The experiment, which involved collaboration between university groups in the United Kingdom, Ireland, and Turkey, and BP and\ud Turkish Petroleum (TPAO), formed part of a larger project that also is using deep seismic reflection and other geophysical data held by the industry partners to determine the subsidence history and hence the strain evolution of\ud the basin

    Continent stabilisation by lateral accretion of subduction zone-processed depleted mantle residues; insights from Zealandia

    Get PDF
    To examine how the mantle lithosphere stabilises continents, we present a synthesis of the mantle beneath Zealandia in the SW Pacific Ocean. Zealandia, Earth's “8th continent”, occurs over 4.9 M km2 and comprises a fore-arc, arc and back-arc fragment rifted from the Australia–Antarctica Gondwana margin 85 Myr ago. The oldest extant crust is ∼500 Ma and the majority is Permian–Jurassic. Peridotitic rocks from most known locations reveal the underpinning mantle to comprise regional domains varying from refractory (Al2O3 < 1 wt%, olivine Mg# > 92, spinel Cr# up to 80, Pt/Ir < 1) to moderately depleted (Al2O3 = 2–4 wt%, olivine Mg# ∼90.5, spinel Cr# < ∼60). There is no systematic distribution of these domains relative to the former arc configuration and some refractory domains underlie crust that is largely devoid of magmatic rocks. Re-depletion Os model ages have no correlation with depletion indices but do have a distribution that is very similar to global convecting mantle. Whole rock, mineral and isotopic data are interpreted to show that the Zealandia mantle lithosphere was constructed from isotopically heterogeneous convecting mantle fragments swept into the sub-arc environment, amalgamated, and variably re-melted under low-P hydrous conditions. The paucity of mafic melt volumes in most of the overlying crust that could relate to the depleted domains requires melting to have been followed by lateral accretion either during subduction or slab rollback. Recent Australia–Pacific convergence has thickened portions of the Zealandia mantle to >160 km. Zealandia shows that the generation of refractory and/or thick continental lithosphere is not restricted to the Archean. Since Archean cratons also commonly display crust–mantle age decoupling, contain spinel peridotites with extreme Cr# numbers that require low-P hydrous melting, and often have a paucity of mafic melts relative to the extreme depletion indicated by their peridotitic roots, they too may – in part – be compilations of peridotite shallowly melted and then laterally accreted at subduction margins

    The ATLAS3D project - XXVI : H I discs in real and simulated fast and slow rotators

    Get PDF
    One quarter of all nearby early-type galaxies (ETGs) outside Virgo host a disc/ring of H I with size from a few to tens of kpc and mass up to ∼109 M⊙. Here we investigate whether this H I is related to the presence of a stellar disc within the host making use of the classification of ETGs in fast and slow rotators (FR/SR). We find a large diversity of H I masses and morphologies within both families. Surprisingly, SRs are detected as often, host as much H I and have a similar rate of H I discs/rings as FRs. Accretion of H I is therefore not always linked to the growth of an inner stellar disc. The weak relation between H I and stellar disc is confirmed by their frequent kinematical misalignment in FRs, including cases of polar and counterrotating gas. In SRs the H I is usually polar. This complex picture highlights a diversity of ETG formation histories which may be lost in the relative simplicity of their inner structure and emerges when studying their outer regions. We find that Λ CDM hydrodynamical simulations have difficulties reproducing the H I properties of ETGs. The gas discs formed in simulations are either too massive or too small depending on the star formation feedback implementation. Kinematical misalignments match the observations only qualitatively. The main point of conflict is that nearly all simulated FRs and a large fraction of all simulated SRs host corotating H I. This establishes the H I properties of ETGs as a novel challenge to simulationsPeer reviewedFinal Accepted Versio

    From M-ary Query to Bit Query: a new strategy for efficient large-scale RFID identification

    Get PDF
    The tag collision avoidance has been viewed as one of the most important research problems in RFID communications and bit tracking technology has been widely embedded in query tree (QT) based algorithms to tackle such challenge. Existing solutions show further opportunity to greatly improve the reading performance because collision queries and empty queries are not fully explored. In this paper, a bit query (BQ) strategy based Mary query tree protocol (BQMT) is presented, which can not only eliminate idle queries but also separate collided tags into many small subsets and make full use of the collided bits. To further optimize the reading performance, a modified dual prefixes matching (MDPM) mechanism is presented to allow multiple tags to respond in the same slot and thus significantly reduce the number of queries. Theoretical analysis and simulations are supplemented to validate the effectiveness of the proposed BQMT and MDPM, which outperform the existing QT-based algorithms. Also, the BQMT and MDPM can be combined to BQMDPM to improve the reading performance in system efficiency, total identification time, communication complexity and average energy cost

    Representing the Windrush generation: metaphor in discourses then and now

    Get PDF
    This paper examines the ways in which the group of people now known as the Windrush generation, who moved to the UK in the period 1948–1971, have been represented in public discourse. This group has been adversely affected by the current ‘hostile environment’ policy in the UK regarding immigration. As I show, in the ensuing and highly critical debate, the government repeatedly positioned them as ‘good’ migrants and placed them in a binary opposition with ‘undesirable’ migrants, who they cite as the intended target of their policy. Using diachronic corpora of parliamentary debates and national media, I compare this contemporary rhetoric with (a) Windrush representations in the 1940s and 1950s, and (b) contemporary representation of those the government constructs as unwanted migrants. Taking metaphor as a key for the comparison I show that there is very little continuity or overlap in how the Windrush migrants were discussed at the time of their arrival and in the current period. Instead, there is a much greater proximity in the past representations of the Windrush migrants and the current representations of ‘undesirable’ migrants. This mismatch in actual and perceived representation at the time of arrival indicates how nostalgia functions in migration discourses, even facilitating anti-immigration arguments

    Continuous Quantum Measurement and the Quantum to Classical Transition

    Get PDF
    While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. {\bf 85}, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes which affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities that describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit. First, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion.Comment: 12 pages, 4 figures, Revtex
    corecore