15,156 research outputs found
Transmission and Reflection of Bose-Einstein Condensates Incident on a Gaussian Potential Barrier
We investigate how Bose-Einstein condensates, whose initial state is either
irrotational or contains a single vortex, scatter off a one-dimensional
Gaussian potential barrier. We find that for low atom densities the vortex
structure within the condensate is maintained during scattering, whereas at
medium and high densities, multiple additional vortices can be created by the
scattering process, resulting in complex dynamics and disruption of the atom
cloud. This disruption originates from two different mechanisms associated
respectively with the initial rotation of the atom cloud and the interference
between the incident and reflected matter waves. We investigate how the
reflection probability depends on the vorticity of the initial state and on the
incident velocity of the Bose-Einstein condensate. To interpret our results, we
derive a general analytical expression for the reflection coefficient of a
rotating Bose-Einstein condensate that scatters off a spatially-varying
one-dimensional potential.Comment: 9 pages, 9 figure
Anomalous quantum reflection of Bose-Einstein condensates from a silicon surface: the role of dynamical excitations
We investigate the effect of inter-atomic interactions on the
quantum-mechanical reflection of Bose-Einstein condensates from regions of
rapid potential variation. The reflection process depends critically on the
density and incident velocity of the condensate. For low densities and high
velocities, the atom cloud has almost the same form before and after
reflection. Conversely, at high densities and low velocities, the reflection
process generates solitons and vortex rings that fragment the condensate. We
show that this fragmentation can explain the anomalously low reflection
probabilities recently measured for low-velocity condensates incident on a
silicon surface.Comment: 5 figures, 5 pages, references correcte
Creation of solitons and vortices by Bragg reflection of Bose-Einstein condensates in an optical lattice
We study the dynamics of Bose-Einstein condensates in an optical lattice and
harmonic trap. The condensates are set in motion by displacing the trap and
initially follow simple semiclassical paths, shaped by the lowest energy band.
Above a critical displacement, the condensate undergoes Bragg reflection. For
high atom densities, the first Bragg reflection generates a train of solitons
and vortices, which destabilize the condensate and trigger explosive expansion.
At lower densities, soliton and vortex formation requires multiple Bragg
reflections, and damps the center-of-mass motion.Comment: 5 pages including 5 figures (for higher resolution figures please
email the authors
Dynamical approach to chains of scatterers
Linear chains of quantum scatterers are studied in the process of
lengthening, which is treated and analysed as a discrete dynamical system
defined over the manifold of scattering matrices. Elementary properties of such
dynamics relate the transport through the chain to the spectral properties of
individual scatterers. For a single-scattering channel case some new light is
shed on known transport properties of disordered and noisy chains, whereas
translationally invariant case can be studied analytically in terms of a simple
deterministic dynamical map. The many-channel case was studied numerically by
examining the statistical properties of scatterers that correspond to a certain
type of transport of the chain i.e. ballistic or (partially) localised.Comment: 16 pages, 7 figure
Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks
The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth\u27s climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem CO2 uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both CO2 uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle–climate models
Zone-plate focusing of Bose-Einstein condensates for atom optics and erasable high-speed lithography of quantum electronic components
We show that Fresnel zone plates, fabricated in a solid surface, can sharply
focus atomic Bose-Einstein condensates that quantum reflect from the surface or
pass through the etched holes. The focusing process compresses the condensate
by orders of magnitude despite inter-atomic repulsion. Crucially, the focusing
dynamics are insensitive to quantum fluctuations of the atom cloud and largely
preserve the condensates' coherence, suggesting applications in passive
atom-optical elements, for example zone plate lenses that focus atomic matter
waves and light at the same point to strengthen their interaction. We explore
transmission zone-plate focusing of alkali atoms as a route to erasable and
scalable lithography of quantum electronic components in two-dimensional
electron gases embedded in semiconductor nanostructures. To do this, we
calculate the density profile of a two-dimensional electron gas immediately
below a patch of alkali atoms deposited on the surface of the nanostructure by
zone-plate focusing. Our results reveal that surface-induced polarization of
only a few thousand adsorbed atoms can locally deplete the electron gas. We
show that, as a result, the focused deposition of alkali atoms by existing zone
plates can create quantum electronic components on the 50 nm scale, comparable
to that attainable by ion beam implantation but with minimal damage to either
the nanostructure or electron gas.Comment: 13 pages, 7 figure
Deuterated Ammonia in Galactic Protostellar Cores
We report on a survey of \nh2d towards protostellar cores in low-mass star
formation and quiescent regions in the Galaxy. Twenty-three out of thirty-two
observed sources have significant (\gsim 5\sigma) \nh2d emission.
Ion-molecule chemistry, which preferentially enhances deuterium in molecules
above its cosmological value of \scnot{1.6}{-5} sufficiently explains these
abundances. NH2D/NH3 ratios towards Class 0 sources yields information about
the ``fossil remnants'' from the era prior to the onset of core collapse and
star formation. We compare our observations with predictions of gas-phase
chemical networks.Comment: 16 Pages, 7 Figures, Accepted to Ap.J., to appear in the June 20,
2001 editio
A vectorized Monte Carlo detector simulation program for electromagnetic interactions
MC4 is a detector simulation program combining a vectorized ray-tracing algorithm with a vectorized version of the electromagnetic interaction routines from GEANT3. The implementation of ray tracing is able to represent moderately complex geometries such as single calorimeter modules or test-beam situations. Results from MC4 are compared with EGS4 simulations and with experimental results. Timing results are given for scalar machines and on a vector supercomputer. Production applications and applications to future versions of the GEANT code are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27643/1/0000019.pd
Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour
Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour
QCD and Yukawa corrections to single-top-quark production via q qbar -> t bbar
We calculate the O(alpha_s) and O(alpha_W m_t^2/M_W^2) corrections to the
production of a single top quark via the weak process q qbar -> t bbar at the
Fermilab Tevatron and the CERN Large Hadron Collider. An accurate calculation
of the cross section is necessary in order to extract |V_tb| from experiment.Comment: LaTeX, 13 pages, replaced with version to appear in Phys. Rev.
- …