93 research outputs found

    Classical and quantum fingerprinting with shared randomness and one-sided error

    Full text link
    Within the simultaneous message passing model of communication complexity, under a public-coin assumption, we derive the minimum achievable worst-case error probability of a classical fingerprinting protocol with one-sided error. We then present entanglement-assisted quantum fingerprinting protocols attaining worst-case error probabilities that breach this bound.Comment: 10 pages, 1 figur

    Joint Impact Assessment of CTA's support to CaFAN (2004-2012)

    Get PDF
    The Caribbean Farmers Network Inc. (CaFAN) is a registered not-for-profit organisation representing about 500,000 small-scale farmers in 15 Caribbean countries. The organisation’s secretariat is located in Kingstown, St. Vincent and the Grenadines. CaFAN conducted this joint impact study, commissioned by the Technical Centre for Agricultural and Rural Cooperation (CTA), to examine in-depth the impact of CTA funding and programme support to CaFAN. The findings are to contribute to learning for development impact within CTA and its ACP partner organisations and networks

    Tight informationally complete quantum measurements

    Get PDF
    We introduce a class of informationally complete positive-operator-valued measures which are, in analogy with a tight frame, "as close as possible" to orthonormal bases for the space of quantum states. These measures are distinguished by an exceptionally simple state-reconstruction formula which allows "painless" quantum state tomography. Complete sets of mutually unbiased bases and symmetric informationally complete positive-operator-valued measures are both members of this class, the latter being the unique minimal rank-one members. Recast as ensembles of pure quantum states, the rank-one members are in fact equivalent to weighted 2-designs in complex projective space. These measures are shown to be optimal for quantum cloning and linear quantum state tomography.Comment: 20 pages. Final versio

    Optimizing quantum process tomography with unitary 2-designs

    Full text link
    We show that weighted unitary 2-designs define optimal measurements on the system-ancilla output state for ancilla-assisted process tomography of unital quantum channels. Examples include complete sets of mutually unbiased unitary-operator bases. Each of these specifies a minimal series of optimal orthogonal measurements. General quantum channels are also considered.Comment: 28 page

    The evolution of gene expression and the transcriptome–phenotype relationship

    Get PDF
    Changes in gene expression underlie the adaptive evolution in many complex phenotypes, and the recent increase in the availability of multi-species comparative transcriptome data has made it possible to scan whole transcriptomes for loci that have experienced adaptive changes in expression. However, despite the increase in data availability, current models of gene expression evolution often do not account for the complexities and inherent noise associated with transcriptome data. Additionally, in contrast to current models of gene sequence evolution, models of transcriptome evolution often lack the sophistication to effectively determine whether transcriptional differences between species or within a clade are the result of neutral or adaptive processes. In this review, we discuss the tools, methods and models that define our current understanding of the relationship between gene expression and complex phenotype evolution. Our goal is to summarize what we know about the evolution of global gene expression patterns underlying complex traits, as well to identify some of the questions that remain to be answered

    Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey

    Get PDF
    K2's Campaign 9 (K2C9) will conduct a ~3.7 deg2 survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax πE{\pi }_{{\rm{E}}} for 170\gtrsim 170 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this article we provide an overview of the K2C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST
    corecore