217 research outputs found

    Anti-inflammatory effects of fatty acid amide hydrolase inhibition in monocytes/macrophages from alzheimer’s disease patients

    Get PDF
    Growing evidence shows that the immune system is critically involved in Alzheimer’s disease (AD) pathogenesis and progression. The modulation and targeting of peripheral immune mechanisms are thus promising therapeutic or preventive strategies for AD. Given the critical involvement of the endocannabinoid (eCB) system in modulating immune functions, we investigated the potential role of the main elements of such a system, namely type-1 and type-2 cannabinoid receptors (CB1 and CB2), and fatty acid amide hydrolase (FAAH), in distinct immune cell populations of the peripheral blood of AD patients. We found that, compared to healthy controls, CB1 and CB2 expression was significantly lower in the B-lymphocytes of AD patients. Moreover, we found that CB2 was significantly lower and FAAH was significantly higher in monocytes of the same subjects. In contrast, T-lymphocytes and NK cells did not show any variation in any of these proteins. Of note, monocytic CB2 and FAAH levels significantly correlated with clinical scores. Furthermore, the pharmacological inactivation of FAAH in monocytes and monocyte-derived macrophages obtained from AD patients was able to modulate their immune responses, by reducing production of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-12, and enhancing that of the anti-inflammatory cytokine IL-10. Furthermore, FAAH blockade skewed AD monocyte-derived macrophages towards a more anti-inflammatory and pro-resolving phenotype. Collectively, our findings highlight a central role of FAAH in regulating AD monocytes/macrophages that could be of value in developing novel monocyte-centered therapeutic approaches aimed at promoting a neuroprotective environment

    Exotic Statistics for Ordinary Particles in Quantum Gravity

    Full text link
    Objects exhibiting statistics other than the familiar Bose and Fermi ones are natural in theories with topologically nontrivial objects including geons, strings, and black holes. It is argued here from several viewpoints that the statistics of ordinary particles with which we are already familiar are likely to be modified due to quantum gravity effects. In particular, such modifications are argued to be present in loop quantum gravity and in any theory which represents spacetime in a fundamentally piecewise-linear fashion. The appearance of unusual statistics may be a generic feature (such as the deformed position-momentum uncertainty relations and the appearance of a fundamental length scale) which are to be expected in any theory of quantum gravity, and which could be testable.Comment: Awarded an honourable mention in the 2008 Gravity Research Foundation Essay Competitio

    Iron-dependent trafficking of 5-lipoxygenase and impact on human macrophage activation

    Get PDF
    5-lipoxygenase (5-LOX) is a non-heme iron-containing dioxygenase expressed in immune cells that catalyzes the two initial steps in the biosynthesis of leukotrienes. It is well known that 5-LOX activation in innate immunity cells is related to different iron-associated proinflammatory disorders, including cancer, neurodegenerative diseases, and atherosclerosis. However, the molecular and cellular mechanism(s) underlying the interplay between iron and 5-LOX activation are largely unexplored. In this study, we investigated whether iron (in the form of Fe3+ and hemin) might modulate 5-LOX influencing its membrane binding, subcellular distribution, and functional activity. We proved by fluorescence resonance energy transfer approach that metal removal from the recombinant human 5-LOX, not only altered the catalytic activity of the enzyme, but also impaired its membrane-binding. To ascertain whether iron can modulate the subcellular distribution of 5-LOX in immune cells, we exposed THP-1 macrophages and human primary macrophages to exogenous iron. Cells exposed to increasing amounts of Fe3+ showed a redistribution (ranging from ~45 to 75%) of the cytosolic 5-LOX to the nuclear fraction. Accordingly, confocal microscopy revealed that acute exposure to extracellular Fe3+, as well as hemin, caused an overt increase in the nuclear fluorescence of 5-LOX, accompanied by a co-localization with the 5-LOX activating protein (FLAP) both in THP-1 macrophages and human macrophages. The functional relevance of iron overloading was demonstrated by a marked induction of the expression of interleukin-6 in iron-treated macrophages. Importantly, pre-treatment of cells with the iron-chelating agent deferoxamine completely abolished the hemin-dependent translocation of 5-LOX to the nuclear fraction, and significantly reverted its effect on interleukin-6 overexpression. These results suggest that exogenous iron modulates the biological activity of 5-LOX in macrophages by increasing its ability to bind to nuclear membranes, further supporting a role for iron in inflammation-based diseases where its homeostasis is altered and suggesting further evidence of risks related to iron overload

    Características clínicas predominantes del trastorno compulsivo canino

    Get PDF
    Problemas como el lamido excesivo de los miembros, la persecución con mordisqueo del apéndice caudal y la deambulación estereotipada en caninos domésticos, actualmente son considerados comportamientos anormales, excesivos en duración, frecuencia e intensidad, relativamente invariables y sin beneficio para el individuo o la especie (compulsiones). Surgen tanto en ambientes hipoestimulantes como hiperestimulantes y no se identifican estímulos disparadores. Se ha demostrado que la disfunción afecta a varios sistemas de neurotransmisores (dopamina, serotonina, noradrenalina y opioides endógenos) y el sistema de regulación intracelular de segundos mensajeros

    The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex.

    Get PDF
    The inner centromere is a region on every mitotic chromosome that enables specific biochemical reactions that underlie properties, such as the maintenance of cohesion, the regulation of kinetochores and the assembly of specialized chromatin, that can resist microtubule pulling forces. The chromosomal passenger complex (CPC) is abundantly localized to the inner centromeres and it is unclear whether it is involved in non-kinase activities that contribute to the generation of these unique chromatin properties. We find that the borealin subunit of the CPC drives phase separation of the CPC in vitro at concentrations that are below those found on the inner centromere. We also provide strong evidence that the CPC exists in a phase-separated state at the inner centromere. CPC phase separation is required for its inner-centromere localization and function during mitosis. We suggest that the CPC combines phase separation, kinase and histone code-reading activities to enable the formation of a chromatin body with unique biochemical activities at the inner centromere

    Cryovolcanic flooding in Viking Terra on Pluto

    Get PDF
    A prominent fossa trough (Uncama Fossa) and adjacent 28-km diameter impact crater (Hardie) in Pluto's Viking Terra, as seen in the high-resolution images from the New Horizons spacecraft, show morphological evidence of in-filling with a material of uniform texture and red-brown color. A linear fissure parallel to the trough may be the source of a fountaining event yielding a cryoclastic deposit having the same composition and color properties as is found in the trough and crater. Spectral maps of this region with the New Horizons LEISA instrument reveal the spectral signature of H₂O ice in these structures and in distributed patches in the adjacent terrain in Viking Terra. A detailed statistical analysis of the spectral maps shows that the colored H₂O ice filling material also carries the 2.2-μm signature of an ammoniated component that may be an ammonia hydrate (NH₃nH₂O) or an ammoniated salt. This paper advances the view that the crater and fossa trough have been flooded by a cryolava debouched from Pluto's interior along fault lines in the trough and in the floor of the impact crater. The now frozen cryolava consisted of liquid H₂O infused with the red-brown pigment presumed to be a tholin, and one or more ammoniated compounds. Although the abundances of the pigment and ammoniated compounds entrained in, or possibly covering, the H₂O ice are unknown, the strong spectral bands of the H₂O ice are clearly visible. In consideration of the factors in Pluto's space environment that are known to destroy ammonia and ammonia-water mixtures, the age of the exposure is of order ≤10⁹ years. Ammoniated salts may be more robust, and laboratory investigations of these compounds are needed

    Cryovolcanic flooding in Viking Terra on Pluto

    Get PDF
    A prominent fossa trough (Uncama Fossa) and adjacent 28-km diameter impact crater (Hardie) in Pluto's Viking Terra, as seen in the high-resolution images from the New Horizons spacecraft, show morphological evidence of in-filling with a material of uniform texture and red-brown color. A linear fissure parallel to the trough may be the source of a fountaining event yielding a cryoclastic deposit having the same composition and color properties as is found in the trough and crater. Spectral maps of this region with the New Horizons LEISA instrument reveal the spectral signature of H₂O ice in these structures and in distributed patches in the adjacent terrain in Viking Terra. A detailed statistical analysis of the spectral maps shows that the colored H₂O ice filling material also carries the 2.2-μm signature of an ammoniated component that may be an ammonia hydrate (NH₃nH₂O) or an ammoniated salt. This paper advances the view that the crater and fossa trough have been flooded by a cryolava debouched from Pluto's interior along fault lines in the trough and in the floor of the impact crater. The now frozen cryolava consisted of liquid H₂O infused with the red-brown pigment presumed to be a tholin, and one or more ammoniated compounds. Although the abundances of the pigment and ammoniated compounds entrained in, or possibly covering, the H₂O ice are unknown, the strong spectral bands of the H₂O ice are clearly visible. In consideration of the factors in Pluto's space environment that are known to destroy ammonia and ammonia-water mixtures, the age of the exposure is of order ≤10⁹ years. Ammoniated salts may be more robust, and laboratory investigations of these compounds are needed

    Salerno's model of DNA reanalysed: could solitons have biological significance?

    Full text link
    We investigate the sequence-dependent behaviour of localised excitations in a toy, nonlinear model of DNA base-pair opening originally proposed by Salerno. Specifically we ask whether ``breather'' solitons could play a role in the facilitated location of promoters by RNA polymerase. In an effective potential formalism, we find excellent correlation between potential minima and {\em Escherichia coli} promoter recognition sites in the T7 bacteriophage genome. Evidence for a similar relationship between phage promoters and downstream coding regions is found and alternative reasons for links between AT richness and transcriptionally-significant sites are discussed. Consideration of the soliton energy of translocation provides a novel dynamical picture of sliding: steep potential gradients correspond to deterministic motion, while ``flat'' regions, corresponding to homogeneous AT or GC content, are governed by random, thermal motion. Finally we demonstrate an interesting equivalence between planar, breather solitons and the helical motion of a sliding protein ``particle'' about a bent DNA axis.Comment: Latex file 20 pages, 5 figures. Manuscript of paper to appear in J. Biol. Phys., accepted 02/09/0
    corecore