21 research outputs found

    EU Wide Monitoring Survey on Waste Water Treatment Plant Effluents

    Get PDF
    In the year 2010, effluents from 90 European waste water treatment plants (WWTPs) were collected and analysed in total for 160 organic chemicals and 20 inorganic trace elements. The analyses were complemented by applying also effect-based monitoring approaches aiming at estrogenicity and dioxin-like toxicity analysed by in vitro reporter gene bioassays, and yeast and diatom culture acute toxicity optical bioassays. The analytical work was performed in six European expert laboratories. This European-wide monitoring study on the occurrence of micropollutants in WWTP effluents represents the largest EU wide monitoring survey on WWTP effluents ever performed. It produced a comprehensive data set on many so far only locally investigated “emerging” compound classes including pharmaceuticals and personal care products (PPCPs), veterinary (antibiotic) drugs, perfluoroalkyl substances (PFASs), organophosphate ester flame retardants, pesticides (and some metabolites) or industrial chemicals such as benzotriazoles (corrosion inhibitors), polycyclic musk fragrances, x-ray contrast agents, Gadolinium compounds, and siloxanes. The obtained results show the presence of 131 target organic compounds in European wastewater effluents, in concentrations ranging from low nanograms to milligrams per liter. These results obtained from 90 different European WWTPs allow the calculation of a European median level for the chemicals investigated. The most relevant compounds identified in the effluent water samples in terms of frecquency of detection, maximum, average and median concentration levels were Sucralose, Acesulfame K (artificial sweeteners), PFOA, PFHxA, PFHpA, PFOS (perfluoroalkyl substances), N,N’-Diethyltoluamide (DEET; insect repellent), Benzotriazoles (corrosion inhibitors), the pharmaceuticals Bisoprolol, Carbamazepine, Ciprofloxacine, Citaprolam, Clindamycine, Codeine, Diltiazem, Diphenhydramin, Eprosartan, Fexofenadine, Flecainide, Gemfibrozil, Fluconazole, Haloperidol, Ibersartan, Ibuprofen, Ketoprofen, Oxazepam, Risperidone, Sulfamethoxazole, Telmisartan, Tramadol, Trimethoprim, Venlafaxin, the organo-phosphate ester flame retardants Tri-iso-butylphosphate (TIBP), Tributylphosphate (TBP), Tris(2-chloroethyl)phosphate (TCEP), Tris(2-chloroisopropyl)phosphate (TCPP), Tris(2-butoxyethyl)phosphate (TDCP), Tris(2-butoxyethyl)phosphate (TBEP), Triphenyl-phosphate (TPP), 2-Ethylhexyldiphenyl-phosphate (EHDPP), the x-ray contrast media Amidotrizoic acid, Iohexol, Iopromid, Iomeprol, Iopamidol, the pesticides Terbutylazine, Terbutylazine-desethyl (metabolite), MCPA, Mecoprop, Diuron, Triclosan (antibacterial), and Gadolinium (from magnetic resonance imaging contrast media used in hospitals).JRC.H.1-Water Resource

    Getting into the water with the Ecosystem Services Approach: The DESSIN ESS evaluation framework

    Get PDF
    Driven by Europe's pressing need to overcome its water quality and water scarcity challenges, the speed of innovation in the water sector is outpacing that of science. The methodologies available to assess the impact of innovative solutions to water-related challenges remain limited and highly theoretical, which sets boundaries on their application and usefulness to water practitioners. This hampers the uptake of new technologies and innovative management practices, thus foregoing potential gains in resource efficiency and nature protection, as well as wider benefits to society and the economy. To address this gap, the DESSIN project developed a framework to evaluate the changes in ecosystem services (ESS) associated with technical or management solutions implemented at the water body, sub-catchment or catchment level. The framework was developed with a specific focus on freshwater ecosystems to allow for a more detailed exploration of practical implementation issues. Its development, testing and validation was carried out by conducting ESS evaluations in three different urban case study settings. The framework builds upon existing classification systems for ESS (CICES and FEGS-CS) and incorporates the DPSIR adaptive management scheme as its main structural element. This enables compatibility with other international initiatives on ESS assessments and establishes a direct link to the EU Water Framework Directive, respectively. This work furthers research on practical implementation of the Ecosystem Services Approach, while pushing the discussion on how to promote more informed decision-making and support innovation uptake to address Europe's current water-related challenges

    Organotin compounds in precipitation, fog and soils of a forested ecosystem in Germany

    No full text
    Organotin compounds (OTC) are highly toxic pollutants and have been mostly investigated so far in aquatic systems and sediments. The concentrations and fluxes of different organotin compounds, including methyl-, butyl-, and octyltin species in precipitation and fog were investigated in a forested catchment in NE Bavaria, Germany. Contents, along with the vertical distribution and storages in two upland and two wetland soils were determined. During the 1-year monitoring, the OTC concentrations in bulk deposition, throughfall and fog ranged from 1 ng Sn l−1 to several ten ng Sn l−1, but never over 200 ng Sn l−1. The OTC concentrations in fog were generally higher than in throughfall and bulk deposition. Mono-substituted species were the dominant Sn species in precipitation (up to 190 ng Sn l−1) equaling a flux of up to 70 mg Sn ha−1 a−1. In upland soils, OTC contents peaked in the forest floor (up to 30 ng Sn g−1) and decreased sharply with the depth. In wetland soils, OTC had slightly higher contents in the upper horizons. The dominance of mono-substituted species in precipitation is well reflected in the contents and storages of OTC in both upland and wetland soils. The ratios of OTC soil storages to the annual throughfall flux ranged from 20 to 600 years. These high ratios are probably due to high stability and low mobility of OTC in soils. No evidence was found for methylation of tin in the wetland soils. In comparison with sediments, concentrations and contents of organotin in forest soils are considerably lower, and the dominant species are less toxic. It is concluded that forested soils may act as sinks for OTC deposited from the atmosphere

    Proceedings of the Cities of the Future - Transitions to the Urban Water Services of Tomorrow (TRUST)

    Full text link
    The conference "Cities of the Future - Transitions to the Urban Water Services of Tomorrow (TRUST)" thus provided an opportunity to present and discuss leading-edge developments in the area of urban water services with an international audience of water utility personnel, researchers, engineers, technology providers, city planners, consultants, regulators and policy makers. It focused on the techniques, technologies and management approaches aiming at enabling and supporting the transition towards more sustainable urban water futures, but also zoomed-in on the socio-economic requirements and aspects of this transition. More than 120 participants from about 20 countries joined the three days event at Mülheim an der Ruhr (Germany) to enjoy and discuss more than 40 presentations and about 20 posters.We are now happy to present and publish this volume with many manuscripts of the presentations given at the conference. We are confident that the promising results presented at the conference will resonate in the water sector and in the long term contribute to more sustainable water services in our Cities of the Future.Schwesig, D.; Cabrera Rochera, E.; Estruch Juan, ME. (2015). Proceedings of the Cities of the Future - Transitions to the Urban Water Services of Tomorrow (TRUST). http://hdl.handle.net/10251/5464

    Exploring 3D Objects with Non-Linear Perspectives in Real-Time, a First User Study

    No full text
    International audienceNon-linear perspectives have the potential to improve 3D scene perception by increasing the information bandwidth of 3D contents. As with the example of the Mercator projection of earth, they can reduce occlusions by showing more of the shape of an object than classical perspectives. However, an ill-advised construction of such "usually static" perspectives could make the original shape difficult to understand, drastically reducing the scene comprehension. Yet, despite of their potential, these perspectives are rarely used. In this paper we aim at making non-linear perspectives more widely usable on mobile devices. We propose to solve the understanding issue by allowing the user to control the transition between linear and non-linear perspectives in real-time with bending gestures. Using this approach, we present the first user study that investigates real-time manipulation of non-linear perspectives in an exploration task. Results show significant benefits of the approach, and give insights on the best bending gestures and configurations

    Pan-European Survey for the Occurrence of Selected Polar Organic Persistent Pollutants in Ground Water

    No full text
    This study provides the first pan-European reconnaissance of the occurrence of polar organic persistent pollutants in European ground water. In total, 164 individual ground-water samples from 23 European Countries were collected and analysed (among others) for 59 selected organic compounds, comprising pharmaceuticals, antibiotics, pesticides (and their transformation products), perfluorinated acids (PFAs), benzotriazoles, hormones, alkylphenolics (endocrine disrupters), Caffeine, Diethyltoluamide (DEET), and Triclosan. The most relevant compounds in terms of frequency of detection and maximum concentrations detected were DEET (84%; 454 ng/L), Caffeine (83%; 189 ng/L), PFOA (66%; 39 ng/L), Atrazine (56%; 253 ng/L), Desethylatrazine (55%; 487 ng/L), 1H-Benzotriazole (53%; 1032 ng/L), Methylbenzotriazole (52%; 516 ng/L), Desethylterbutylazine (49%; 266 ng/L), PFOS (48%, 135 ng/L), Simazine (43%; 127 ng/L), Carbamazepine (42%; 390 ng/L), nonylphenoxy acetic acid (NPE1C) (42%; 11 microg/L), Bisphenol A (40%; 2.3 microg/L), PFHxS (35%; 19 ng/L), Terbutylazine (34%; 716 ng/L), Bentazone (32%; 11 microg/L), Propazine (32%; 25 ng/L), PFHpA (30%; 21 ng/L), 2,4-Dinitrophenol (29%; 122 ng/L), Diuron (29%; 279 ng/L), and Sulfamethoxazole (24%; 38 ng/L). The chemicals which were detected most frequently above the European ground water quality standard for pesticides of 0.1 microg/L were Chloridazon-desphenyl (26 samples), NPE1C (20), Bisphenol A (12), Benzotriazole (8), N,N¿-Dimethylsulfamid (DMS) (8), Desethylatrazine (6), Nonylphenol (6), Chloridazon-methyldesphenyl (6), Methylbenzotriazole (5), Carbamazepine (4), and Bentazone (4). However, only 1.7% of all single analytical measurements (in total ~ 8000) were above this threshold value of 0.1 microg/L; 7.3% were > than 10 ng/L.JRC.H.1-Water Resource

    Getting into the water with the Ecosystem Services Approach: The DESSIN ESS evaluation framework

    Get PDF
    Driven by Europe’s pressing need to overcome its water quality and water scarcity challenges, the speed of innovation in the water sector is outpacing that of science. The methodologies available to assess the impact of innovative solutions to water-related challenges remain limited and highly theoretical, which sets boundaries on their application and usefulness to water practitioners. This hampers the uptake of new technologies and innovative management practices, thus foregoing potential gains in resource efficiency and nature protection, as well as wider benefits to society and the economy. To address this gap, the DESSIN project developed a framework to evaluate the changes in ecosystem services (ESS) associated with technical or management solutions implemented at the water body, sub-catchment or catchment level. The framework was developed with a specific focus on freshwater ecosystems to allow for a more detailed exploration of practical implementation issues. Its development, testing and validation was carried out by conducting ESS evaluations in three different urban case study settings. The framework builds upon existing classification systems for ESS (CICES and FEGS-CS) and incorporates the DPSIR adaptive management scheme as its main structural element. This enables compatibility with other international initiatives on ESS assessments and establishes a direct link to the EU Water Framework Directive, respectively. This work furthers research on practical implementation of the Ecosystem Services Approach, while pushing the discussion on how to promote more informed decision-making and support innovation uptake to address Europe’s current water-related challenges.publishedVersio
    corecore