12 research outputs found

    Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm

    Get PDF
    Many engineering problems require the optimization of expensive, black-box functions involving multiple conflicting criteria, such that commonly used methods like multiobjective genetic algorithms are inadequate. To tackle this problem several algorithms have been developed using surrogates. However, these often have disadvantages such as the requirement of a priori knowledge of the output functions or exponentially scaling computational cost with respect to the number of objectives. In this paper a new algorithm is proposed, TSEMO, which uses Gaussian processes as surrogates. The Gaussian processes are sampled using spectral sampling techniques to make use of Thompson sampling in conjunction with the hypervolume quality indicator and NSGA-II to choose a new evaluation point at each iteration. The reference point required for the hypervolume calculation is estimated within TSEMO. Further, a simple extension was proposed to carry out batch-sequential design. TSEMO was compared to ParEGO, an expected hypervolume implementation, and NSGA-II on 9 test problems with a budget of 150 function evaluations. Overall, TSEMO shows promising performance, while giving a simple algorithm without the requirement of a priori knowledge, reduced hypervolume calculations to approach linear scaling with respect to the number of objectives, the capacity to handle noise and lastly the ability for batch-sequential usage

    Automated Self-Optimisation of Multi-Step Reaction and Separation Processes Using Machine Learning

    Get PDF
    There has been an increasing interest in the use of automated self-optimising continuous flow platforms for the development and manufacture in synthesis in recent years. Such processes include multiple reactive and work-up steps, which need to be efficiently optimised. Here, we report the combination of multi-objective optimisation based on machine learning methods (TSEMO algorithm) with self-optimising platforms for the optimisation of multi-step continuous reaction processes. This is demonstrated for a pharmaceutically relevant Sonogashira reaction. We demonstrate how optimum reaction conditions are re-evaluated with the changing downstream work-up specifications in the active learning process. Furthermore, a Claisen-Schmidt condensation reaction with subsequent liquid-liquid separation was optimised with respect to three-objectives. This approach provides the ability to simultaneously optimise multi-step processes with respect to multiple objectives, and thus has the potential to make substantial savings in time and resources

    Machine learning meets continuous flow chemistry: Automated optimization towards the Pareto front of multiple objectives

    Get PDF
    Automated development of chemical processes requires access to sophisticated algorithms for multi-objective optimization, since single-objective optimization fails to identify the trade-offs between conflicting performance criteria. Herein we report the implementation of a new multi-objective machine learning optimization algorithm for self-optimization, and demonstrate it in two exemplar chemical reactions performed in continuous flow. The algorithm successfully identified a set of optimal conditions corresponding to the trade-off curve (Pareto front) between environmental and economic objectives in both cases. Thus, it reveals the complete underlying trade-off and is not limited to one compromise as is the case in many other studies. The machine learning algorithm proved to be extremely data efficient, identifying the optimal conditions for the objectives in a lower number of experiments compared to single-objective optimizations. The complete underlying trade-off between multiple objectives is identified without arbitrary weighting factors, but via true multi-objective optimization.EPSRC CASE with AstraZenec

    Efficient hybrid multiobjective optimization of pressure swing adsorption

    No full text
    Pressure swing adsorption (PSA) is an energy-efficient technology for gas separation, while the multiobjective optimization of PSA is a challenging task. To tackle this, we propose a hybrid optimization framework (TSEMO + DyOS), which integrates two steps. In the first step, a Bayesian stochastic multiobjective optimization algorithm (i.e., TSEMO) searches the entire decision space and identifies an approximated Pareto front within a small number of simulations. Within TSEMO, Gaussian process (GP) surrogate models are trained to approximate the original full process models. In the second step, a gradient-based deterministic algorithm (i.e., DyOS) is initialized at the approximated Pareto front to further refine the solutions until local optimality. Therein, the full process model is used in the optimization. The proposed hybrid framework is efficient, because it benefits from the coarse-to-fine function evaluations and stochastic-to-deterministic searching strategy. When the result is far away from the optima, TSEMO can efficiently approximate a trade-off curve as good as a commonly used evolutional algorithm, i.e., Nondominated Sorting Genetic Algorithm II (NSGA-II), while TSEMO only uses around 1/16th of CPU time of NSGA-II. This is because the GP-based surrogate model is utilized for function evaluations in the initial coarse search. When the result is near the optima, the searching efficiency of TSEMO dramatically decreases, while DyOS can accelerate the searching efficiency by over 10 times. This is because, in the proximity of optima, the exploitation capacity of DyOS is significantly higher than that of TSEMO.Cambridge Trust CSC National Research Foundation Singapor

    A mobile robotic chemist

    Get PDF
    Technologies such as batteries, biomaterials and heterogeneous catalysts have functions that are defined by mixtures of molecular and mesoscale components. As yet, this multi-length-scale complexity cannot be fully captured by atomistic simulations, and the design of such materials from first principles is still rare1,2,3,4,5. Likewise, experimental complexity scales exponentially with the number of variables, restricting most searches to narrow areas of materials space. Robots can assist in experimental searches6,7,8,9,10,11,12,13,14 but their widespread adoption in materials research is challenging because of the diversity of sample types, operations, instruments and measurements required. Here we use a mobile robot to search for improved photocatalysts for hydrogen production from water15. The robot operated autonomously over eight days, performing 688 experiments within a ten-variable experimental space, driven by a batched Bayesian search algorithm16,17,18. This autonomous search identified photocatalyst mixtures that were six times more active than the initial formulations, selecting beneficial components and deselecting negative ones. Our strategy uses a dexterous19,20 free-roaming robot21,22,23,24, automating the researcher rather than the instruments. This modular approach could be deployed in conventional laboratories for a range of research problems beyond photocatalysis
    corecore