27 research outputs found

    TableButler – a Windows based tool for processing large data tables generated with high-throughput methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput "omics" based data analysis play emerging roles in life sciences and molecular diagnostics. This emphasizes the urgent need for user-friendly windows-based software interfaces that could process the diversity of large tab-delimited raw data files generated by these methods. Depending on the study, dozens to hundreds of these data tables are generated. Before the actual statistical or cluster analysis, these data tables have to be combined and merged to expression matrices (e.g., in case of gene expression analysis). Gene annotations as well as information concerning the samples analyzed may be appended, renewed or extended. Often additional data values shall be computed or certain features must be filtered out.</p> <p>Results</p> <p>In order to perform these tasks, we have developed a Microsoft Windows based application, "<b><it>TableButler</it></b>", which allows biologists or clinicians without substantial bioinformatics background to perform a plethora of data processing tasks required to analyze the large-scale data.</p> <p>Conclusion</p> <p><b><it>TableButler </it></b>is a monolithic Windows application. It is implemented to handle, join and preprocess large tab delimited ASCII data files. The intuitive user interface enables scientists (e.g. biologists, clinicians or others) to setup workflows for their specific problems by simple drag-and drop like operations.</p> <p>For more details about <b><it>TableButler</it></b>, visit <url>http://www.OncoExpress.org/software/tablebutler</url>.</p

    Analysis with respect to instrumental variables for the exploration of microarray data structures

    Get PDF
    BACKGROUND: Evaluating the importance of the different sources of variations is essential in microarray data experiments. Complex experimental designs generally include various factors structuring the data which should be taken into account. The objective of these experiments is the exploration of some given factors while controlling other factors. RESULTS: We present here a family of methods, the analyses with respect to instrumental variables, which can be easily applied to the particular case of microarray data. An illustrative example of analysis with instrumental variables is given in the case of microarray data investigating the effect of beverage intake on peripheral blood gene expression. This approach is compared to an ANOVA-based gene-by-gene statistical method. CONCLUSION: Instrumental variables analyses provide a simple way to control several sources of variation in a multivariate analysis of microarray data. Due to their flexibility, these methods can be associated with a large range of ordination techniques combined with one or several qualitative and/or quantitative descriptive variables

    Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Desert

    No full text
    The Atacama Desert is the most extreme non-polar biome on Earth, the core region of which is considered to represent the dry limit for life and to be an analogue for Martian soils. This study focused on actinobacteria because they are keystone species in terrestrial ecosystems and are acknowledged as an unrivalled source of bioactive compounds. Metagenomic analyses of hyper-arid and extreme hyperarid soils in this desert revealed a remarkable degree of actinobacterial 'dark matter', evidenced by a detected increase of 34% in families against those that are validly published. Rank-abundance analyses indicated that these soils were high-diversity habitats and that the great majority of designated 'rare' genera (up to 60% of all phylotypes) were always rare. These studies have enabled a core actinobacterial microbiome common to both habitats to be defined. The great majority of detected taxa have not been recovered by culture dependent methods, neither, with very few exceptions, has their functional ecology been explored. A microbial seed bank of this magnitude has significance not just for Atacama soil ecosystem resilience but represents an enormous untapped resource for biotechnology discovery programmes in an era where resistance to existing antibiotics is rapidly becoming a major threat to global health.Royal Society for International Joint Project JP100654 Malaysian Government Leverhulme Trus
    corecore