2,672 research outputs found

    Radio astrometry with chromatic AGN core positions

    Full text link
    Aims: The effect of frequency-dependent AGN core positions (``core-shifts'') on radio Very Long Baseline Interferometry (VLBI) global astrometry measurements is investigated. Methods: The basic equations relating to VLBI astrometry are reviewed, including the effects of source structure. A power-law representation of core-shifts, based on both observations and theoretical considerations of jet conditions, is incorporated. Results: It is shown that, in the presence of core-shifts, phase and group-delay astrometry measurements yield different positions. For a core displacement from the jet base parametrized by Delta x (lambda) = k lambda^beta group delays measure a ``reduced'' core-shift of (1-beta) Delta x (lambda). For the astrophysically-significant case of beta = 1, group delays measure no shift at all, giving the position of the jet base. At 8.4 GHz an estimated typical offset between phase and group-delay positions of ~170 uas is smaller than the current ~250 uas precision of group-delay positions of the sources used to define the ICRF; however, this effect must be taken into account for future measurements planned with improved accuracy when comparing with optical positions of AGN to be obtained with the GAIA mission.Comment: Accepted for publication in Astronomy & Astrophysics, 4 page

    Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.

    Get PDF
    Cerium oxide nanoparticles (CeO2 NP) are a common component of many commercial products. Due to the general concerns over the potential toxicity of engineered nanoparticles (ENPs), the phytotoxicity and in planta accumulation of CeO2 NPs have been broadly investigated. However, most previous studies were conducted in hydroponic systems and with grain crops. For a few studies performed with soil grown plants, the impact of soil properties on the fate and transport of CeO2 NPs was generally ignored even though numerous previous studies indicate that soil properties play a critical role in the fate and transport of environmental pollutants. The objectives of this study were to evaluate the soil fractionation and bioavailability of CeO2 NPs to Raphanus sativus L (radish) in two soil types. Our results showed that the silty loam contained slightly higher exchangeable fraction (F1) of cerium element than did loamy sand soil, but significantly lower reducible (F2) and oxidizable (F3) fractions as CeO2 NPs concentration increased. CeO2 NPs associated with silicate minerals or the residue fraction (F4) dominated in both soils. The cerium concentration in radish storage root showed linear correlation with the sum of the first three fractions (r(2) = 0.98 and 0.78 for loamy sand and silty loam respectively). However, the cerium content in radish shoots only exhibited strong correlations with F1 (r(2) = 0.97 and 0.89 for loamy sand and silty loam respectively). Overall, the results demonstrated that soil properties are important factors governing the distribution of CeO2 NPs in soil and subsequent bioavailability to plants

    A non-adapted sparse approximation of PDEs with stochastic inputs

    Get PDF
    We propose a method for the approximation of solutions of PDEs with stochastic coefficients based on the direct, i.e., non-adapted, sampling of solutions. This sampling can be done by using any legacy code for the deterministic problem as a black box. The method converges in probability (with probabilistic error bounds) as a consequence of sparsity and a concentration of measure phenomenon on the empirical correlation between samples. We show that the method is well suited for truly high-dimensional problems (with slow decay in the spectrum)

    EXD2 Protects Stressed Replication Forks and Is Required for Cell Viability in the Absence of BRCA1/2.

    Get PDF
    Accurate DNA replication is essential to preserve genomic integrity and prevent chromosomal instability-associated diseases including cancer. Key to this process is the cells' ability to stabilize and restart stalled replication forks. Here, we show that the EXD2 nuclease is essential to this process. EXD2 recruitment to stressed forks suppresses their degradation by restraining excessive fork regression. Accordingly, EXD2 deficiency leads to fork collapse, hypersensitivity to replication inhibitors, and genomic instability. Impeding fork regression by inactivation of SMARCAL1 or removal of RECQ1's inhibition in EXD2-/- cells restores efficient fork restart and genome stability. Moreover, purified EXD2 efficiently processes substrates mimicking regressed forks. Thus, this work identifies a mechanism underpinned by EXD2's nuclease activity, by which cells balance fork regression with fork restoration to maintain genome stability. Interestingly, from a clinical perspective, we discover that EXD2's depletion is synthetic lethal with mutations in BRCA1/2, implying a non-redundant role in replication fork protection

    What’s in a Name? Use of Brand versus Generic Drug Names in United States Outpatient Practice

    Get PDF
    BACKGROUND: The use of brand rather than generic names for medications can increase health care costs. However, little is known at a national level about how often physicians refer to drugs using their brand or generic names. OBJECTIVE: To evaluate how often physicians refer to drugs using brand or generic terminology. DESIGN AND PARTICIPANTS: We used data from the 2003 National Ambulatory Medical Care Survey (NAMCS), a nationally representative survey of 25,288 community-based outpatient visits in the United States. After each visit, patient medications were recorded on a survey encounter form by the treating physician or transcribed from office notes. MEASUREMENTS: Our main outcome measure was the frequency with which medications were recorded on the encounter form using their brand or generic names. RESULTS: For 20 commonly used drugs, the median frequency of brand name use was 98% (interquartile range, 81–100%). Among 12 medications with no generic competition at the time of the survey, the median frequency of brand name use was 100% (range 92–100%). Among 8 medications with generic competition at the time of the survey (“multisource” drugs), the median frequency of brand name use was 79% (range 0–98%; P < .001 for difference between drugs with and without generic competition). CONCLUSIONS: Physicians refer to most medications by their brand names, including drugs with generic formulations. This may lead to higher health care costs by promoting the use of brand-name products when generic alternatives are available

    Entangled Mechanical Oscillators

    Full text link
    Hallmarks of quantum mechanics include superposition and entanglement. In the context of large complex systems, these features should lead to situations like Schrodinger's cat, which exists in a superposition of alive and dead states entangled with a radioactive nucleus. Such situations are not observed in nature. This may simply be due to our inability to sufficiently isolate the system of interest from the surrounding environment -- a technical limitation. Another possibility is some as-of-yet undiscovered mechanism that prevents the formation of macroscopic entangled states. Such a limitation might depend on the number of elementary constituents in the system or on the types of degrees of freedom that are entangled. One system ubiquitous to nature where entanglement has not been previously demonstrated is distinct mechanical oscillators. Here we demonstrate deterministic entanglement of separated mechanical oscillators, consisting of the vibrational states of two pairs of atomic ions held in different locations. We also demonstrate entanglement of the internal states of an atomic ion with a distant mechanical oscillator.Comment: 7 pages, 2 figure

    The Na+/H+ exchanger NHE1 is required for directional migration stimulated via PDGFR-α in the primary cilium

    Get PDF
    We previously demonstrated that the primary cilium coordinates platelet-derived growth factor (PDGF) receptor (PDGFR) α–mediated migration in growth-arrested fibroblasts. In this study, we investigate the functional relationship between ciliary PDGFR-α and the Na+/H+ exchanger NHE1 in directional cell migration. NHE1 messenger RNA and protein levels are up-regulated in NIH3T3 cells and mouse embryonic fibroblasts (MEFs) during growth arrest, which is concomitant with cilium formation. NHE1 up-regulation is unaffected in Tg737orpk MEFs, which have no or very short primary cilia. In growth-arrested NIH3T3 cells, NHE1 is activated by the specific PDGFR-α ligand PDGF-AA. In wound-healing assays on growth-arrested NIH3T3 cells and wild-type MEFs, NHE1 inhibition by 5′-(N-ethyl-N-isopropyl) amiloride potently reduces PDGF-AA–mediated directional migration. These effects are strongly attenuated in interphase NIH3T3 cells, which are devoid of primary cilia, and in Tg737orpk MEFs. PDGF-AA failed to stimulate migration in NHE1-null fibroblasts. In conclusion, stimulation of directional migration in response to ciliary PDGFR-α signals is specifically dependent on NHE1 activity, indicating that NHE1 activation is a critical event in the physiological response to PDGFR-α stimulation

    Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes

    Get PDF
    In normal T cell progenitors, phosphoinositide-dependent kinase l (PDK1)–mediated phosphorylation and activation of protein kinase B (PKB) is essential for the phosphorylation and inactivation of Foxo family transcription factors, and also controls T cell growth and proliferation. The current study has characterized the role of PDK1 in the pathology caused by deletion of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN). PDK1 is shown to be essential for lymphomagenesis caused by deletion of PTEN in T cell progenitors. However, PTEN deletion bypasses the normal PDK1-controlled signaling pathways that determine thymocyte growth and proliferation. PDK1 does have important functions in PTEN-null thymocytes, notably to control the PKB–Foxo signaling axis and to direct the repertoire of adhesion and chemokine receptors expressed by PTEN-null T cells. The results thus provide two novel insights concerning pathological signaling caused by PTEN loss in lymphocytes. First, PTEN deletion bypasses the normal PDK1-controlled metabolic checkpoints that determine cell growth and proliferation. Second, PDK1 determines the cohort of chemokine and adhesion receptors expressed by PTEN-null cells, thereby controlling their migratory capacity

    Resolved Sideband Cooling of a Micromechanical Oscillator

    Full text link
    Micro- and nanoscale opto-mechanical systems provide radiation pressure coupling of optical and mechanical degree of freedom and are actively pursued for their ability to explore quantum mechanical phenomena of macroscopic objects. Many of these investigations require preparation of the mechanical system in or close to its quantum ground state. Remarkable progress in ground state cooling has been achieved for trapped ions and atoms confined in optical lattices. Imperative to this progress has been the technique of resolved sideband cooling, which allows overcoming the inherent temperature limit of Doppler cooling and necessitates a harmonic trapping frequency which exceeds the atomic species' transition rate. The recent advent of cavity back-action cooling of mechanical oscillators by radiation pressure has followed a similar path with Doppler-type cooling being demonstrated, but lacking inherently the ability to attain ground state cooling as recently predicted. Here we demonstrate for the first time resolved sideband cooling of a mechanical oscillator. By pumping the first lower sideband of an optical microcavity, whose decay rate is more than twenty times smaller than the eigen-frequency of the associated mechanical oscillator, cooling rates above 1.5 MHz are attained. Direct spectroscopy of the motional sidebands reveals 40-fold suppression of motional increasing processes, which could enable reaching phonon occupancies well below unity (<0.03). Elemental demonstration of resolved sideband cooling as reported here should find widespread use in opto-mechanical cooling experiments. Apart from ground state cooling, this regime allows realization of motion measurement with an accuracy exceeding the standard quantum limit.Comment: 13 pages, 5 figure
    • …
    corecore