12,463 research outputs found
Randomized crossover comparison of proportional assist ventilation and patient-triggered ventilation in extremely low birth weight infants with evolving chronic lung disease
Background: Refinement of ventilatory techniques remains a challenge given the persistence of chronic lung disease of preterm infants. Objective: To test the hypothesis that proportional assist ventilation ( PAV) will allow to lower the ventilator pressure at equivalent fractions of inspiratory oxygen (FiO(2)) and arterial hemoglobin oxygen saturation in ventilator-dependent extremely low birth weight infants in comparison with standard patient-triggered ventilation ( PTV). Methods: Design: Randomized crossover design. Setting: Two level-3 university perinatal centers. Patients: 22 infants ( mean (SD): birth weight, 705 g ( 215); gestational age, 25.6 weeks ( 2.0); age at study, 22.9 days ( 15.6)). Interventions: One 4- hour period of PAV was applied on each of 2 consecutive days and compared with epochs of standard PTV. Results: Mean airway pressure was 5.64 ( SD, 0.81) cm H2O during PAV and 6.59 ( SD, 1.26) cm H2O during PTV ( p < 0.0001), the mean peak inspiratory pressure was 10.3 ( SD, 2.48) cm H2O and 15.1 ( SD, 3.64) cm H2O ( p < 0.001), respectively. The FiO(2) ( 0.34 (0.13) vs. 0.34 ( 0.14)) and pulse oximetry readings were not significantly different. The incidence of arterial oxygen desaturations was not different ( 3.48 ( 3.2) vs. 3.34 ( 3.0) episodes/ h) but desaturations lasted longer during PAV ( 2.60 ( 2.8) vs. 1.85 ( 2.2) min of desaturation/ h, p = 0.049). PaCO2 measured transcutaneously in a subgroup of 12 infants was similar. One infant met prespecified PAV failure criteria. No adverse events occurred during the 164 cumulative hours of PAV application. Conclusions: PAV safely maintains gas exchange at lower mean airway pressures compared with PTV without adverse effects in this population. Backup conventional ventilation breaths must be provided to prevent apnea-related desaturations. Copyright (c) 2007 S. Karger AG, Base
Patients' and relatives' assessment of clozapine treatment
Published version: http://journals.cambridge.org/action/displayJournal?jid=PS
Nuclear Pairing in the T=0 channel revisited
Recent published data on the isoscalar gap in symmetric nuclear matter using
the Paris force and the corresponding BHF single particle dispersion are
corrected leading to an extremely high proton-neutron gap of
MeV at . Arguments whether this value can be reduced due
to screening effects are discussed. A density dependent delta interaction with
cut off is adjusted so as to approximately reproduce the nuclear matter values
with the Paris force.Comment: 4 pages, 4 figure
Customized ion flux-energy distribution functions in capacitively coupled plasmas by voltage waveform tailoring
We propose a method to generate a single peak at a distinct energy in the ion
flux-energy distribution function (IDF) at the electrode surfaces in
capacitively coupled plasmas. The technique is based on the tailoring of the
driving voltage waveform, i.e. adjusting the phases and amplitudes of the
applied harmonics, to optimize the accumulation of ions created by charge
exchange collisions and their subsequent acceleration by the sheath electric
field. The position of the peak (i.e. the ion energy) and the flux of the ions
within the peak of the IDF can be controlled in a wide domain by tuning the
parameters of the applied RF voltage waveform, allowing optimization of various
applications where surface reactions are induced at particular ion energies
- …