22,848 research outputs found

    Gravitational Collapse in One Dimension

    Full text link
    We simulate the evolution of one-dimensional gravitating collisionless systems from non- equilibrium initial conditions, similar to the conditions that lead to the formation of dark- matter halos in three dimensions. As in the case of 3D halo formation we find that initially cold, nearly homogeneous particle distributions collapse to approach a final equilibrium state with a universal density profile. At small radii, this attractor exhibits a power-law behavior in density, {\rho}(x) \propto |x|^(-{\gamma}_crit), {\gamma}_crit \simeq 0.47, slightly but significantly shallower than the value {\gamma} = 1/2 suggested previously. This state develops from the initial conditions through a process of phase mixing and violent relaxation. This process preserves the energy ranks of particles. By warming the initial conditions, we illustrate a cross-over from this power-law final state to a final state containing a homogeneous core. We further show that inhomogeneous but cold power-law initial conditions, with initial exponent {\gamma}_i > {\gamma}_crit, do not evolve toward the attractor but reach a final state that retains their original power-law behavior in the interior of the profile, indicating a bifurcation in the final state as a function of the initial exponent. Our results rely on a high-fidelity event-driven simulation technique.Comment: 14 Pages, 13 Figures. Submitted to MNRA

    Elastic and plastic effects on heterogeneous nucleation and nanowire formation

    Full text link
    We investigate theoretically the effects of elastic and plastic deformations on heterogeneous nucleation and nanowire formation. In the first case, the influence of the confinement of the critical nucleus between two parallel misfitting substrates is investigated using scaling arguments. We present phase diagrams giving the nature of the nucleation regime as a function of the driving force and the degree of confinement. We complement this analytical study by amplitude equations simulations. In the second case, the influence of a screw dislocation inside a nanowire on the development of the morphological surface stability of the wire, related to the Rayleigh-Plateau instability, is examined. Here the screw dislocation provokes a torsion of the wire known as Eshelby twist. Numerical calculations using the finite element method and the amplitude equations are performed to support analytical investigations. It is shown that the screw dislocation promotes the Rayleigh-Plateau instability.Comment: 16 page

    Spacecraft utensil/hand cleansing fixture

    Get PDF
    A system concept for an inflight utensil/hand cleansing fixture is described which includes the following features: (1) capability for efficient cleansing and rinsing of utensils or hands, and (2) provision for general waste fluid disposal. The design concept provides for the capability of functioning for a 30 day shuttle mission containing seven occupants/users. The long range goal is to provide a functioning system capable of operating for missions of at least 120 days. The fixture is a self-contained unit that can be installed in the standard water interface requirements. Service to the unit is a single source of unheated potable water and water is discharged from the unit into a single return waste connection. In addition, the design includes provisions for the intake and discharge of purge air and the discharge of evolved gases. Both the air and the gases are filtered or processed in the assembly before releasing them into the habitability area

    Optical properties of self-organized wurtzite InN/GaN quantum dots: A combined atomistic tight-binding and full configuration interaction calculation

    Full text link
    In this work we investigate the electronic and optical properties of self-assembled InN/GaN quantum dots. The one-particle states of the low-dimensional heterostructures are provided by a tight-binding model that fully includes the wurtzite crystal structure on an atomistic level. Optical dipole and Coulomb matrix elements are calculated from these one-particle wave functions and serve as an input for full configuration interaction calculations. We present multi-exciton emission spectra and discuss in detail how Coulomb correlations and oscillator strengths are changed by the piezoelectric fields present in the structure. Vanishing exciton and biexciton ground state emission for small lens-shaped dots is predicted.Comment: 3 pages, 2 figure

    In-Plane Conductivity Anisotropy in Underdoped Cuprates in the Spin-Charge Gauge Approach

    Full text link
    Applying the recently developed spin-charge gauge theory for the pseudogap phase in cuprates, we propose a self-consistent explanation of several peculiar features of the far-infrared in-plane AC conductivity, including a broad peak as a function of frequency and significant anisotropy at low temperatures, along with a similar temperature-dependent in-plane anisotropy of DC conductivity in lightly doped cuprates. The anisotropy of the metal-insulator crossover scale is considered to be responsible for these phenomena. The obtained results are in good agreement with experiments. An explicit proposal is made to further check the theory.Comment: 5 pages, 3 figures, to appear in Phys. Rev.

    Surveys of Galaxy Clusters with the Sunyaev Zel'dovich Effect

    Get PDF
    We have created mock Sunyaev-Zel'dovich effect (SZE) surveys of galaxy clusters using high resolution N-body simulations. To the pure surveys we add `noise' contributions appropriate to instrument and primary CMB anisotropies. Applying various cluster finding strategies to these mock surveys we generate catalogues which can be compared to the known positions and masses of the clusters in the simulations. We thus show that the completeness and efficiency that can be achieved depend strongly on the frequency coverage, noise and beam characteristics of the instruments, as well as on the candidate threshold. We study the effects of matched filtering techniques on completeness, and bias. We suggest a gentler filtering method than matched filtering in single frequency analyses. We summarize the complications that arise when analyzing the SZE signal at a single frequency, and assess the limitations of such an analysis. Our results suggest that some sophistication is required when searching for `clusters' within an SZE map.Comment: 8 pages, 7 figure

    The Vampire and the FOOL

    Full text link
    This paper presents new features recently implemented in the theorem prover Vampire, namely support for first-order logic with a first class boolean sort (FOOL) and polymorphic arrays. In addition to having a first class boolean sort, FOOL also contains if-then-else and let-in expressions. We argue that presented extensions facilitate reasoning-based program analysis, both by increasing the expressivity of first-order reasoners and by gains in efficiency

    Handling and analysis of ices in cryostats and glove boxes in view of cometary samples

    Get PDF
    Comet nucleus sample return mission and other return missions from planets and satellites need equipment for handling and analysis of icy samples at low temperatures under vacuum or protective gas. Two methods are reported which were developed for analysis of small icy samples and which are modified for larger samples in cometary matter simulation experiments (KOSI). A conventional optical cryostat system was modified to allow for transport of samples at 5 K, ion beam irradiation, and measurement in an off-line optical spectrophotometer. The new system consists of a removable window plug containing nozzles for condensation of water and volatiles onto a cold finger. This plug can be removed in a vacuum system, changed against another plug (e.g., with other windows (IR, VIS, VUV) or other nozzles). While open, the samples can be treated under vacuum with cooling by manipulators (cut, removal, sample taking, irradiation with light, photons, or ions). After bringing the plug back, the samples can be moved to another site of analysis. For handling the 30 cm diameter mineral-ice samples from the KOSI experiments an 80x80x80 cm glove box made out of plexiglass was used. The samples were kept in a liquid nitrogen bath, which was filled from the outside. A stream a dry N2 and evaporating gas from the bath purified the glove box from impurity gases and, in particular, H2O, which otherwise would condense onto the samples
    corecore