15,505 research outputs found
The Chirality operators for Heisenberg Spin Systems
The ground state of closed Heisenberg spin chains with an odd number of sites
has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A
non-zero chirality implies that the spins are not coplanar, and is a measure of
handedness. The chirality operator, which can be treated as a spin-1/2
operator, is explicitly constructed in terms of the spin operators, and is
given as commutator of Permutation operators.Comment: 7 pages, report IC/94/23. E-mail: [email protected]
MEVTV study: Early tectonic evolution of Mars: Crustal dichotomy to Valles Marineris
Several fundamental problems were addressed in the early impact, tectonic, and volcanic evolution of the martian lithosphere: (1) origin and evolution of the fundamental crustal dichotomy, including development of the highland/lowland transition zone; (2) growth and evolution of the Valles Marineris; and (3) nature and role of major resurfacing events in early martian history. The results in these areas are briefly summarized
A diagrammatic approach to study the information transfer in weakly non-linear channels
In a recent work we have introduced a novel approach to study the effect of
weak non-linearities in the transfer function on the information transmitted by
an analogue channel, by means of a perturbative diagrammatic expansion. We
extend here the analysis to all orders in perturbation theory, which allows us
to release any constraint concerning the magnitude of the expansion parameter
and to establish the rules to calculate easily the contribution at any order.
As an example we explicitly compute the information up to the second order in
the non-linearity, in presence of random gaussian connectivities and in the
limit when the output noise is not small. We analyze the first and second order
contributions to the mutual information as a function of the non-linearity and
of the number of output units. We believe that an extensive application of our
method via the analysis of the different contributions at distinct orders might
be able to fill a gap between well known analytical results obtained for linear
channels and the non trivial treatments which are required to study highly
non-linear channels.Comment: 17 pages, 3 figure
Electrical methods of determining soil moisture content
The electrical permittivity of soils is a useful indicator of soil moisture content. Two methods of determining the permittivity profile in soils are examined. A method due to Becher is found to be inapplicable to this situation. A method of Slichter, however, appears to be feasible. The results of Slichter's method are extended to the proposal of an instrument design that could measure available soil moisture profile (percent available soil moisture as a function of depth) from a surface measurement to an expected resolution of 10 to 20 cm
Anatomical information science
The Foundational Model of Anatomy (FMA) is a map of the human body. Like maps of other sorts – including the map-like representations we find in familiar anatomical atlases – it is a representation of a certain portion of spatial reality as it exists at a certain (idealized) instant of time. But unlike other maps, the FMA comes in the form of a sophisticated ontology of its objectdomain, comprising some 1.5 million statements of anatomical relations among some 70,000 anatomical kinds. It is further distinguished from other maps in that it represents not some specific portion of spatial reality (say: Leeds in 1996), but rather the generalized or idealized spatial reality associated with a generalized or idealized human being at some generalized or idealized instant of time. It will be our concern in what follows to outline the approach to ontology that is represented by the FMA and to argue that it can serve as the basis for a new type of anatomical information science. We also draw some implications for our understanding of spatial reasoning and spatial ontologies in general
How Changes in Plant Community Structure Affect Terrestrial Invertebrate Food Webs
We investigated how change in plant community composition and vegetative structure brought about by annual grass-specific herbicide application affects terrestrial arthropod communities, with special emphasis on the potential mutualists and predators of the endangered Fender’s blue butterfly, Plebejus icarioides fenderi (Family: Lycaenidae). Larvae of this species form facultative protective mutualisms with ants, and they may be preyed upon by numerous invertebrate predators. We used pitfall trapping to compare terrestrial invertebrate community structure between control and herbicide-treated plots through time. The extent to which major changes in plant community composition affect the rest of the invertebrate community may have relevance for management decisions if the focus of the conservation effort has strong ecological interactions with greatly affected non-target species
Direct observation of superconducting vortex clusters pinned by a periodic array of magnetic dots in ferromagnetic/superconducting hybrid structures
Strong pinning of superconducting flux quanta by a square array of 1
m-sized ferromagnetic dots in a magnetic-vortex state was visualized by
low-temperature magnetic force microscopy (LT-MFM). A direct correlation of the
superconducting flux lines with the positions of the dots was derived. The
force that the MFM tip exerts on the individual vortex in the depinning process
was used to estimate the spatial modulation of the pinning potential. It was
found, that the superconducting vortices which are preferably located on top of
the Py dots experience about 15 times stronger pinning forces as compared to
the pinning force in the pure Nb film. The strong pinning exceeds the repulsive
interaction between the superconducting vortices and allows the vortex clusters
to be located at each dot. Our microscopic studies are consistent with global
magnetoresistace measurements on these hybrid structures.Comment: 4 pages, 4 figure
Modulation of the Work Function by the Atomic Structure of Strong Organic Electron Acceptors on H-Si(111)
Advances in hybrid organic/inorganic architectures for optoelectronics can be
achieved by understanding how the atomic and electronic degrees of freedom
cooperate or compete to yield the desired functional properties. Here we show
how work-function changes are modulated by the structure of the organic
components in model hybrid systems. We consider two cyano-quinodimethane
derivatives (F4-TCNQ and F6-TCNNQ), which are strong electron-acceptor
molecules, adsorbed on H-Si(111). From systematic structure searches employing
range-separated hybrid HSE06 functional including many body van der Waals
contributions, we predict that despite their similar composition, these
molecules adsorb with significantly different densely-packed geometries in the
first layer, due to strong intermolecular interaction. F6-TCNNQ shows a much
stronger intralayer interaction (primarily due to van der Waals contributions)
than F4-TCNQ in multilayered structures. The densely-packed geometries induce a
large interface-charge rearrangement that result in a work-function increase of
1.11 and 1.76 eV for F4-TCNQ and F6-TCNNQ, respectively. Nuclear fluctuations
at room temperature produce a wide distribution of work-function values, well
modeled by a normal distribution with {\sigma}=0.17 eV. We corroborate our
findings with experimental evidence of pronounced island formation for F6-TCNNQ
on H-Si(111) and with the agreement of trends between predicted and measured
work-function changes
High Rate Performance of Drift Tubes
This article describes calculations and measurements of space charge effects
due to high rate irradiation in high resolution drift tubes. Two main items are
studied: the reduction of the gas gain and changes of the drift time. Whereas
the gain reduction is similar for all gases and unavoidable, the drift time
changes depend on the kind of gas that is used. The loss in resolution due to
high particle rate can be minimized with a suitable gas. This behaviour is
calculable, allowing predictions for new gas mixtures.Comment: 20 pages, submitted to Nuclear Instruments and Methods
Domain structure of epitaxial Co films with perpendicular anisotropy
Epitaxial hcp Cobalt films with pronounced c-axis texture have been prepared
by pulsed lased deposition (PLD) either directly onto Al2O3 (0001) single
crystal substrates or with an intermediate Ruthenium buffer layer. The crystal
structure and epitaxial growth relation was studied by XRD, pole figure
measurements and reciprocal space mapping. Detailed VSM analysis shows that the
perpendicular anisotropy of these highly textured Co films reaches the
magnetocrystalline anisotropy of hcp-Co single crystal material. Films were
prepared with thickness t of 20 nm < t < 100 nm to study the crossover from
in-plane magnetization to out-of-plane magnetization in detail. The analysis of
the periodic domain pattern observed by magnetic force microscopy allows to
determine the critical minimum thickness below which the domains adopt a pure
in-plane orientation. Above the critical thickness the width of the stripe
domains is evaluated as a function of the film thickness and compared with
domain theory. Especially the discrepancies at smallest film thicknesses show
that the system is in an intermediate state between in-plane and out-of-plane
domains, which is not described by existing analytical domain models
- …