24 research outputs found

    The solute transport and binding profile of a novel nucleobase cation symporter 2 from the honeybee pathogen Paenibacillus larvae

    Get PDF
    Here, we report that a novel nucleobase cation symporter 2 encoded in the genome of the honeybee bacterial pathogen Paenibacillus larvae reveals high levels of amino acid sequence similarity to the Escherichia coli and Bacillus subtilis uric acid and xanthine transporters. This transporter is named P. larvae uric acid permease-like protein (PlUacP). Even though PlUacP displays overall amino acid sequence similarities, has common secondary structures, and shares functional motifs and functionally important amino acids with E. coli xanthine and uric acid transporters, these commonalities are insufficient to assign transport function to PlUacP. The solute transport and binding profile of PlUacP was determined by radiolabeled uptake experiments via heterologous expression in nucleobase transporter-deficient Saccharomyces cerevisiae strains. PlUacP transports the purines adenine and guanine and the pyrimidine uracil. Hypoxanthine, xanthine, and cytosine are not transported by PlUacP, but, along with uric acid, bind in a competitive manner. PlUacP has strong affinity for adenine Km 7.04 ± 0.18 μm, and as with other bacterial and plant NCS2 proteins, PlUacP function is inhibited by the proton disruptor carbonyl cyanide m-chlorophenylhydrazone. The solute transport and binding profile identifies PlUacP as a novel nucleobase transporter

    Taxonomy based on science is necessary for global conservation

    Get PDF
    Peer reviewe

    Botryotrichum domesticum sp. nov., a new hyphomycete from an indoor environment

    No full text
    Here we report on a fungus that is new to science and was isolated from a swab sample collected in a Massachusetts (USA) residence. Morphological characters of the fungus were studied and DNA sequences generated from ITS, LSU, rpb2, and tub2 ribosomal loci were used to establish a proper phylogenetic relationship with allied genera. The fungus was named Botryotrichum domesticum. The newly named species has thick-walled conidia globose to subglobose, 17.7 ± 2.6 × 17.3 ± 2.5 μm, developing on both aerial and immersed hyphae, with an absence of setae.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Heterologous Complementation Studies Reveal the Solute Transport Profiles of a Two-Member Nucleobase Cation Symporter 1 (NCS1) Family in Physcomitrella Patens

    Get PDF
    As part of an evolution-function analysis, two nucleobase cation symporter 1 (NCS1) from the moss Physcomitrella patens (PpNCS1A and PpNCS1B) are examined – the first such analysis of nucleobase transporters from early land plants. The solute specificity profiles for the moss NCS1 were determined through heterologous expression, growth and radiolabeled uptake experiments in NCS1-deficient Saccharomyces cerevisiae. Both PpNCS1A and 1B, share the same profiles as high affinity transporters of adenine and transport uracil, guanine, 8-azaguanine, 8-azaadenine, cytosine, 5-fluorocytosine, hypoxanthine, and xanthine. Despite sharing the same solute specificity profile, PpNCS1A and PpNCS1B move nucleobase compounds with different efficiencies. The broad nucleobase transport profile of PpNCS1A and 1B differs from the recently-characterized Viridiplantae NCS1 in breadth, revealing a flexibility in solute interactions with NCS1 across plant evolution

    High Glycolate Oxidase Activity Is Required for Survival of Maize in Normal Air1[OA]

    No full text
    A mutant in the maize (Zea mays) Glycolate Oxidase1 (GO1) gene was characterized to investigate the role of photorespiration in C4 photosynthesis. An Activator-induced allele of GO1 conditioned a seedling lethal phenotype when homozygous and had 5% to 10% of wild-type GO activity. Growth of seedlings in high CO2 (1%–5%) was sufficient to rescue the mutant phenotype. Upon transfer to normal air, the go1 mutant became necrotic within 7 d and plants died within 15 d. Providing [1-14C]glycolate to leaf tissue of go1 mutants in darkness confirmed that the substrate is inefficiently converted to 14CO2, but both wild-type and GO-deficient mutant seedlings metabolized [1-14C]glycine similarly to produce [14C]serine and 14CO2 in a 1:1 ratio, suggesting that the photorespiratory pathway is otherwise normal in the mutant. The net CO2 assimilation rate in wild-type leaves was only slightly inhibited in 50% O2 in high light but decreased rapidly and linearly with time in leaves with low GO. When go1 mutants were shifted from high CO2 to air in light, they accumulated glycolate linearly for 6 h to levels 7-fold higher than wild type and 11-fold higher after 25 h. These studies show that C4 photosynthesis in maize is dependent on photorespiration throughout seedling development and support the view that the carbon oxidation pathway evolved to prevent accumulation of toxic glycolate

    Circinotrichum sinense, a new asexual fungus from Hubei, China

    No full text
    A setose hyphomycete was collected as part of a recent expedition for microfungi in the Duheyuan National Nature Reserve in Hubei, China. The conidia are typical of Circinotrichum, being curved or falcate, single-celled, colorless, smooth with a setula at the apical end, and similar to Circinotrichum rigidum. Circinotrichum sinense has a longer setula only at the apical end and verrucose setae, while C. rigidum has a setula on both ends and smooth setae. Phylogenetic analysis using ITS and LSU DNA sequence data and examination of morphological characters showed that this fungus cannot be identified as any previously described species of Circinotrichum. Thus, a new fungal taxon is described. A key to recognized species of Circinotrichum is also provided.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    The solute transport and binding profile of a novel nucleobase cation symporter 2 from the honeybee pathogen Paenibacillus larvae

    No full text
    Here, we report that a novel nucleobase cation symporter 2 encoded in the genome of the honeybee bacterial pathogen Paenibacillus larvae reveals high levels of amino acid sequence similarity to the Escherichia coli and Bacillus subtilis uric acid and xanthine transporters. This transporter is named P. larvae uric acid permease-like protein (PlUacP). Even though PlUacP displays overall amino acid sequence similarities, has common secondary structures, and shares functional motifs and functionally important amino acids with E. coli xanthine and uric acid transporters, these commonalities are insufficient to assign transport function to PlUacP. The solute transport and binding profile of PlUacP was determined by radiolabeled uptake experiments via heterologous expression in nucleobase transporter-deficient Saccharomyces cerevisiae strains. PlUacP transports the purines adenine and guanine and the pyrimidine uracil. Hypoxanthine, xanthine, and cytosine are not transported by PlUacP, but, along with uric acid, bind in a competitive manner. PlUacP has strong affinity for adenine Km 7.04 ± 0.18 μm, and as with other bacterial and plant NCS2 proteins, PlUacP function is inhibited by the proton disruptor carbonyl cyanide m-chlorophenylhydrazone. The solute transport and binding profile identifies PlUacP as a novel nucleobase transporter
    corecore