1,065 research outputs found
Quantum probe and design for a chemical compass with magnetic nanostructures
Magnetic fields as weak as Earth's may affect the outcome of certain
photochemical reactions that go through a radical pair intermediate. When the
reaction environment is anisotropic, this phenomenon can form the basis of a
chemical compass and has been proposed as a mechanism for animal
magnetoreception. Here, we demonstrate how to optimize the design of a chemical
compass with a much better directional sensitivity simply by a gradient field,
e.g. from a magnetic nanostructure. We propose an experimental test of these
predictions, and suggest design principles for a hybrid metallic-organic
chemical compass. In addition to the practical interest in designing a
biomimetic weak magnetic field sensor, our result shows that gradient fields
can server as powerful tools to probe spin correlations in radical pair
reactions.Comment: 8 pages, 6 figures, comments are welcom
3-dimensional Gravity from the Turaev-Viro Invariant
We study the -deformed su(2) spin network as a 3-dimensional quantum
gravity model. We show that in the semiclassical continuum limit the
Turaev-Viro invariant obtained recently defines naturally regularized
path-integral la Ponzano-Regge, In which a contribution from
the cosmological term is effectively included. The regularization dependent
cosmological constant is found to be , where
. We also discuss the relation to the Euclidean Chern-Simons-Witten
gravity in 3-dimension.Comment: 11page
Quantum Zeno Effect Explains Magnetic-Sensitive Radical-Ion-Pair Reactions
Chemical reactions involving radical-ion pairs are ubiquitous in biology,
since not only are they at the basis of the photosynthetic reaction chain, but
are also assumed to underlie the biochemical magnetic compass used by avian
species for navigation. Recent experiments with magnetic-sensitive radical-ion
pair reactions provided strong evidence for the radical-ion-pair
magnetoreception mechanism, verifying the expected magnetic sensitivities and
chemical product yield changes. It is here shown that the theoretical
description of radical-ion-pair reactions used since the 70's cannot explain
the observed data, because it is based on phenomenological equations masking
quantum coherence effects. The fundamental density matrix equation derived here
from basic quantum measurement theory considerations naturally incorporates the
quantum Zeno effect and readily explains recent experimental observations on
low- and high-magnetic-field radical-ion-pair reactions.Comment: 10 pages, 5 figure
Reaction Pathways Based on the Gradient of the Mean First-Passage Time
Finding representative reaction pathways is necessary for understanding
mechanisms of molecular processes, but is considered to be extremely
challenging. We propose a new method to construct reaction paths based on mean
first-passage times. This approach incorporates information of all possible
reaction events as well as the effect of temperature. The method is applied to
exemplary reactions in a continuous and in a discrete setting. The suggested
approach holds great promise for large reaction networks that are completely
characterized by the method through a pathway graph.Comment: v2; 4 pages including 5 figure
Polymer Release out of a Spherical Vesicle through a Pore
Translocation of a polymer out of curved surface or membrane is studied via
mean first passage time approach. Membrane curvature gives rise to a constraint
on polymer conformation, which effectively drives the polymer to the outside of
membrane where the available volume of polymer conformational fluctuation is
larger. Considering a polymer release out of spherical vesicle, polymer
translocation time is changed to the scaling behavior for
, from for , where is the polymer contour
length and , are vesicle radius and polymer radius of gyration
respectively. Also the polymer capture into a spherical budd is studied and
possible apparatus for easy capture is suggested.Comment: 14 pages RevTeX, 6 postscript figures, published in Phys. Rev. E 57,
730 (1998
Photoproducts of bacteriorhodopsin mutants: a molecular dynamics study
Molecular dynamics simulations of wild-type bacteriorhodopsin (bR) and of its D85N, D85T, D212N, and Y57F mutants have been carried out to investigate possible differences in the photoproducts of these proteins. For each mutant, a series of 50 molecular dynamics simulations of the photoisomerization and subsequent relaxation process were completed. The photoproducts can be classified into four distinct classes: 1) 13-cis retinal, with the retinal N-H+ bond oriented toward Asp-96; 2) 13-cis retinal, with the N-H+ oriented toward Asp-85 and hydrogen-bonded to a water molecule; 3) 13,14-di-cis retinal; 4) all-trans retinal. Simulations of wild-type bR and of its Y57F mutant resulted mainly in class 1 and class 2 products; simulations of D85N, D85T, and D212N mutants resulted almost entirely in class 1 products. The results support the suggestion that only class 2 products initiate a functional pump cycle. The formation of class 1 products for the D85N, D85T, and D212N mutants can explain the reversal of proton pumping under illumination by blue and yellow light
Molecular dynamics simulation on a parallel computer.
For the purpose of molecular dynamics simulations of large biopolymers we have built a parallel computer with a systolic loop architecture, based on Transputers as computational units, and have programmed it in Occam 11. The computational nodes of the computer are linked together in a systolic ring. The program based on this .topology for large biopolymers increases its computational throughput nearly linearly with the number of computational nodes. The program developed is closely related to the simulation programs CHARMM and XPLOR, the input files required (force field, protein structure file, coordinates) and output files generated (sets of atomic coordinates representing dynamic trajectories and energies) are compatible with the corresponding files of these programs. Benchmark results of simulations of biopolymers comprising 66, 568, 3 634, 5 797 and 12 637 atoms are compared with XPLOR simulations on conventional computers (Cray, Convex, Vax). These results demonstrate that the software and hardware developed provide extremely cost effective biopolymer simulations. We present also a simulation (equilibrium of X-ray structure) of the complete photosynthetic reaction center of Rhodopseudomonus viridis (12 637 atoms). The simulation accounts for the Coulomb forces exactly, i.e. no cut-off had been assumed
- …