5 research outputs found

    Spaceborne Lidar in the Study of Marine Systems

    Get PDF
    Satellite passive ocean color instruments have provided an unbroken ~20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here we present a review of the lidar technique, its applications in marine systems, a prospective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multi-platform virtual constellation of observational assets enabling a 3-dimensional reconstruction of global ocean ecosystems

    Shifts in Phytoplankton Community Structure Across an Anticyclonic Eddy Revealed From High Spectral Resolution Lidar Scattering Measurements

    Get PDF
    WOS:000548189100001International audienceChanges in airborne high spectral resolution lidar (HSRL) measurements of scattering, depolarization, and attenuation coincided with a shift in phytoplankton community composition across an anticyclonic eddy in the North Atlantic. We normalized the total depolarization ratio (delta) by the particulate backscattering coefficient (b(b)(p)) to account for the covariance in delta and b(b)(p) that has been attributed to multiple scattering. A 15% increase in delta/b(b)(p) inside the eddy coincided with decreased phytoplankton biomass and a shift to smaller and more elongated phytoplankton cells. Taxonomic changes (reduced dinoflagellate relative abundance inside the eddy) were also observed. The delta signal is thus potentially most sensitive to changes in phytoplankton shape because neither the observed change in the particle size distribution (PSD) nor refractive index (assuming average refractive indices) are consistent with previous theoretical modeling results. We additionally calculated chlorophyll-a (Chl) concentrations from measurements of the diffuse light attenuation coefficient (K-d) and divided by b(b)(p) to evaluate another optical metric of phytoplankton community composition (Chl:b(bp)), which decreased by more than a factor of two inside the eddy. This case study demonstrates that the HSRL is able to detect changes in phytoplankton community composition. High spectral resolution lidar measurements reveal complex structures in both the vertical and horizontal distribution of phytoplankton in the mixed layer providing a valuable new tool to support other remote sensing techniques for studying mixed layer dynamics. Our results identify fronts at the periphery of mesoscale eddies as locations of abrupt changes in near-surface optical properties
    corecore