12,364 research outputs found

    Quantum kk-core conduction on the Bethe lattice

    Full text link
    Classical and quantum conduction on a bond-diluted Bethe lattice is considered. The bond dilution is subject to the constraint that every occupied bond must have at least k1k-1 neighboring occupied bonds, i.e. kk-core diluted. In the classical case, we find the onset of conduction for k=2k=2 is continuous, while for k=3k=3, the onset of conduction is discontinuous with the geometric random first-order phase transition driving the conduction transition. In the quantum case, treating each occupied bond as a random scatterer, we find for k=3k=3 that the random first-order phase transition in the geometry also drives the onset of quantum conduction giving rise to a new universality class of Anderson localization transitions.Comment: 12 pgs., 6 fig

    Level statistics for quantum kk-core percolation

    Full text link
    Quantum kk-core percolation is the study of quantum transport on kk-core percolation clusters where each occupied bond must have at least kk occupied neighboring bonds. As the bond occupation probability, pp, is increased from zero to unity, the system undergoes a transition from an insulating phase to a metallic phase. When the lengthscale for the disorder, ldl_d, is much greater than the coherence length, lcl_c, earlier analytical calculations of quantum conduction on the Bethe lattice demonstrate that for k=3k=3 the metal-insulator transition (MIT) is discontinuous, suggesting a new universality class of disorder-driven quantum MITs. Here, we numerically compute the level spacing distribution as a function of bond occupation probability pp and system size on a Bethe-like lattice. The level spacing analysis suggests that for k=0k=0, pqp_q, the quantum percolation critical probability, is greater than pcp_c, the geometrical percolation critical probability, and the transition is continuous. In contrast, for k=3k=3, pq=pcp_q=p_c and the transition is discontinuous such that these numerical findings are consistent with our previous work to reiterate a new universality class of disorder-driven quantum MITs.Comment: 8 pages, 11 figure

    Origin and thermal evolution of Mars

    Get PDF
    The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle, and mantle heat production. Geological, geophysical, and geochemical observations of the compositon and structure of the interior and of the timing of major events in Martian evolution are used to constrain the model computations. Such evolutionary events include global differentiation, atmospheric outgassing, and the formation of the hemispherical dichotomy and Tharsis. Numerical calculations of fully three-dimensional, spherical convection in a shell the size of the Martian mantle are performed to explore plausible patterns of Martian mantel convection and to relate convective features, such as plumes, to surface features, such as Tharsis. The results from the model calculations are presented

    Morphology and evolution of coronae and ovoids on Venus

    Get PDF
    Coronae and ovoids on Venus were first identified in Venera 15/16 data. They are distinctive and apparently unique to the planet, and may be important indicators of processes operating in the Venusian mantle. Magellan images have provided the first high resolution views of coronae and ovoid morphology. Herein, the general geologic character is described of coronae and ovoids, and some inferences are drawn about their geologic evolution. Coronae are circular to elongate features surrounded by an annulus of deformational features, with a relatively raised or indistinct topographic signature and, commonly, a peripheral trough or moat. Ovoids are circular to elongate features other than coronae with either positive or negative topographic signatures, associated with tectonic deformation and volcanism. The relationship of these two geologic features to each other and to Venusian geology is briefly discussed
    corecore