64 research outputs found
Inâplane photocurrent spectroscopy in GaAs-AlAs superlattices
The inâplane photoconductivity of GaAsâAlAs superlattices on GaAs substrates is experimentally studied as a function of the incident photon energy at different temperatures and light intensities. Superlattice and substrate are electrically isolated by a thick âAl0.3Ga0.7As barrier but connected through penetrating contacts. Depending on the transport properties of the two subsystems pseudoânegative photoconductivity can be observed, i.e., at the absorption maximum of the superlattice the photocurrent exhibits a minimum
Recommended from our members
Evidence for frequency comb emission from a Fabry-PĂ©rot terahertz quantum-cascade laser
We report on a broad-band terahertz quantum-cascade laser (QCL) with a long Fabry-PĂ©rot ridge cavity, for which the tuning range of the individual laser modes exceeds the mode spacing. While a spectral range of approximately 60 GHz (2 cmâ1) is continuously covered by current and temperature tuning, the total emission range spans more than 270 GHz (9 cmâ1). Within certain operating ranges, we found evidence for stable frequency comb operation of the QCL. An experimental technique is presented to characterize frequency comb operation, which is based on the self-mixing effect
Recommended from our members
Long-term stability of GaAs/AlAs terahertz quantum-cascade lasers
We have investigated high-performance GaAs/AlAs terahertz (THz) quantum-cascade lasers (QCLs) with respect to the long-term stability of their operating parameters. The output power of lasers that contain an additional, thick AlAs refractive-index contrast layer underneath the cascade structure decreases after three months by about 35%. The deterioration of these lasers is attributed to the oxidation processes in this contrast layer starting from the facets. However, GaAs/AlAs THz QCLs with an Al0.9Ga0.1As refractive-index contrast layer exhibit long-term stability of the operating parameters over many years even when they are exposed to atmospheric conditions. Therefore, these lasers are promising high-power radiation sources in the terahertz spectral region for commercial applications
Recommended from our members
High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback
Currently, different competing waveguide and resonator concepts exist for terahertz quantum-cascade lasers (THz QCLs). We examine the continuous-wave (cw) performance of THz QCLs with single-plasmon (SP) and metal-metal (MM) waveguides fabricated from the same wafer. While SP QCLs are superior in terms of output power, the maximum operating temperature for MM QCLs is typically much higher. For SP QCLs, we observed cw operation up to 73 K as compared to 129 K for narrow (†15 Όm) MM QCLs. In the latter case, single-mode operation and a narrow beam profile were achieved by applying third-order distributed-feedback gratings and contact pads which are optically insulated from the intended resonators. We present a quantitative analytic model for the beam profile, which is based on experimentally accessible parameters
Recommended from our members
Frequency modulation spectroscopy with a THz quantum-cascade laser
We report on a terahertz spectrometer for high-resolution molecular spectroscopy based on a quantum-cascade laser. High-frequency modulation (up to 50 MHz) of the laser driving current produces a simultaneous modulation of the frequency and amplitude of the laser output. The modulation generates sidebands, which are symmetrically positioned with respect to the laser carrier frequency. The molecular transition is probed by scanning the sidebands across it. In this way, the absorption and the dispersion caused by the molecular transition are measured. The signals are modeled by taking into account the simultaneous modulation of the frequency and amplitude of the laser emission. This allows for the determination of the strength of the frequency as well as amplitude modulation of the laser and of molecular parameters such as pressure broadening
Recommended from our members
Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers
We report on terahertz quantum-cascade lasers (THz QCLs) based on first-order lateral distributed-feedback (lDFB) gratings, which exhibit continuous-wave operation, high output powers (>8 mW), and single-mode emission at 3.3â3.4 THz. A general method is presented to determine the coupling coefficients of lateral gratings in terms of the coupled-mode theory, which demonstrates that large coupling strengths are obtained in the presence of corrugated metal layers. The experimental spectra are in agreement with simulations of the lDFB cavities, which take into account the reflective end facets
Recommended from our members
Terahertz absorption spectroscopy for measuring atomic oxygen densities in plasmas
This paper describes the first implementation of terahertz (THz) quantum cascade lasers for high-resolution absorption spectroscopy on plasmas. Absolute densities of ground state atomic oxygen were directly obtained by using the fine structure transition at approximately 4.75 THz. Measurements were performed on a low-pressure capacitively coupled radio frequency oxygen discharge. The detection limit in this arrangement was found to be 2 Ă 10 13 cmâ3, while the measurement accuracy was within 5%, as demonstrated by reference measurements of a well-defined ammonia transition. The results show that the presented method is well suited to measure atomic oxygen densities, and it closes the THz gap for quantitative atomic density measurements in harsh environments such as plasmas
Recommended from our members
Terahertz quantum-cascade lasers for high-resolution absorption spectroscopy of atoms and ions in plasmas
We report on terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures, which exhibit single-mode emission at 3.360, 3.921, and 4.745 THz. These frequencies are in close correspondence to fine-structure transitions of Al atoms, N+ ions, and O atoms, respectively. Due to the low electrical pump power of these THz QCLs, they can be operated in a mechanical cryocooler in continuous-wave mode, while a sufficient intrinsic tuning range of more than 5 GHz is maintained. The single-mode operation and the intrinsic tuning range of these THz QCLs allow for the application of these lasers as radiation sources for high-resolution absorption spectroscopy to determine the absolute densities of Al atoms, N+ ions, and O atoms in plasmas
Recommended from our members
Terahertz quantum-cascade lasers for high-resolution absorption spectroscopy of atoms and ions in plasmas
We report on terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures, which exhibit single-mode emission at 3.360, 3.921, and 4.745 THz. These frequencies are in close correspondence to fine-structure transitions of Al atoms, N+ ions, and O atoms, respectively. Due to the low electrical pump power of these THz QCLs, they can be operated in a mechanical cryocooler in continuous-wave mode, while a sufficient intrinsic tuning range of more than 5 GHz is maintained. The single-mode operation and the intrinsic tuning range of these THz QCLs allow for the application of these lasers as radiation sources for high-resolution absorption spectroscopy to determine the absolute densities of Al atoms, N+ ions, and O atoms in plasmas
- âŠ