690 research outputs found

    Parameters of the Magnetic Flux inside Coronal Holes

    Full text link
    Parameters of magnetic flux distribution inside low-latitude coronal holes (CHs) were analyzed. A statistical study of 44 CHs based on Solar and Heliospheric Observatory (SOHO)/MDI full disk magnetograms and SOHO/EIT 284\AA images showed that the density of the net magnetic flux, BnetB_{{\rm net}}, does not correlate with the associated solar wind speeds, VxV_x. Both the area and net flux of CHs correlate with the solar wind speed and the corresponding spatial Pearson correlation coefficients are 0.75 and 0.71, respectively. A possible explanation for the low correlation between BnetB_{{\rm net}} and VxV_x is proposed. The observed non-correlation might be rooted in the structural complexity of the magnetic field. As a measure of complexity of the magnetic field, the filling factor, f(r) f(r), was calculated as a function of spatial scales. In CHs, f(r)f(r) was found to be nearly constant at scales above 2 Mm, which indicates a monofractal structural organization and smooth temporal evolution. The magnitude of the filling factor is 0.04 from the Hinode SOT/SP data and 0.07 from the MDI/HR data. The Hinode data show that at scales smaller than 2 Mm, the filling factor decreases rapidly, which means a mutlifractal structure and highly intermittent, burst-like energy release regime. The absence of necessary complexity in CH magnetic fields at scales above 2 Mm seems to be the most plausible reason why the net magnetic flux density does not seem to be related to the solar wind speed: the energy release dynamics, needed for solar wind acceleration, appears to occur at small scales below 1 Mm.Comment: 6 figures, approximately 23 pages. Accepted in Solar Physic

    Reactive CaCO3 Formation from CO2 and Methanolic Ca(OH)2 Dispersions: Transient Methoxide Salts, Carbonate Esters and Sol–Gels

    Get PDF
    A combination of ex situ and in situ characterization techniques was used to determine the mechanism of calcium carbonate (CaCO3) formation from calcium hydroxide (Ca(OH)2) dispersions in methanol/water (CH3OH/H2O) systems. Mid-infrared (mid-IR) analysis shows that in the absence of carbon dioxide (CO2) Ca(OH)2 establishes a reaction equilibrium with CH3OH, forming calcium hydroxide methoxide (Ca(OH)(OCH3)) and calcium methoxide (Ca(OCH3)2). Combined ex situ mid-IR, thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray absorption spectroscopy and scanning electron microscopy examination of the reaction product formed in the presence of CO2 reveals the formation of calcium dimethylcarbonate (Ca(OCOOCH3)2). This strongly suggests that carbonation takes place by reaction with the Ca(OCH3)2 formed from a Ca(OH)2 and CH3OH reaction. Time-resolved XRD indicates that in the presence of H2O the Ca(OCOOCH3)2 ester releases CH3OH and CO2, forming ACC, which subsequently transforms into vaterite and then calcite. TGA reveals that thermal decomposition of Ca(OCOOCH3)2 in the absence of H2O mainly leads to the reformation of Ca(OCH3)2, but this is accompanied by a significant parallel reaction that releases dimethylether (CH3OCH3) and CO2. CaCO3 is the final product in both decomposition pathways. For CH3OH/H2O mixtures containing more than 50 mol % H2O, direct formation of calcite from Ca(OH)2 becomes the dominant pathway, although the formation of some Ca(OCOOCH3)2 was still evident in the in situ mid-IR spectra of 20 and 40 mol % CH3OH systems. In the presence of ≤20 mol % H2O, hydrolysis of the ester led to the formation of an ACC sol–gel. In both the 90 and 100 mol % CH3OH systems, diffusion-limited ACC → vaterite → calcite transformations were observed. Traces of aragonite were also detected. We believe that this is the first time that these reaction pathways during the carbonation of Ca(OH)2 in a methanolic phase have been systematically and experimentally characterized

    The UKIDSS Galactic Plane Survey

    Get PDF
    'The definitive version is available at www.blackwell-synergy.com .' Copyright Blackwell Publishing DOI: 10.1111/j.1365-2966.2008.13924.xThe UKIDSS Galactic Plane Survey (GPS) is one of the five near-infrared Public Legacy Surveys that are being undertaken by the UKIDSS consortium, using the Wide Field Camera on the United Kingdom Infrared TelescopePeer reviewe

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<η<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure

    Azimuthal anisotropy: the higher harmonics

    Full text link
    We report the first observations of the fourth harmonic (v_4) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding

    All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    Full text link
    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: minor corrections to some figures and captions, clarification of some points in the text, added references, added new paragraph with results on atom-resonator interactio

    Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV

    Get PDF
    We report the STAR measurement of Phi meson production in Au+Au and p+p collisions at sqrt (s)=200 GeV. Using the event mixing technique, the Phi spectra and yields are obtained at mid-rapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the Phi transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that Phi production in central Au+Au collisions is suppressed relative to peripheral collisions when scaled by the number of binary collisions. The systematics of versus centrality and the constant Phi/K- ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for Phi production.Comment: 6 pages, 3 figures, submitted to Phys. Rev. Let

    Strange Resonance Production in p+p and Au+Au Collisions at RHIC Energies

    Full text link
    Resonance yields and spectra from elementary p+p and Au+Au collisions at sNN=\sqrt{s_{\rm NN}} = 200 GeV from the STAR experiment at RHIC are presented and discussed in terms of chemical and thermal freeze-out conditions. Thermal models do not adequately describe the yields of the resonance production in central Au+Au collisions. The approach to include elastic hadronic interactions between chemical freeze-out and thermal freeze-out suggests a time of Δτ>\Delta \tau>5 fm/c.Comment: 4 pages, 7 figures, proceedings of the Quark Matter 2004, in Oakland, California, to be published in Journal of Physics G: Nuclear and Particle Physic

    Identified particles at large transverse momenta in STAR in Au+Au collisions @ sqrt(s_NN) = 200 GeV

    Full text link
    We report measurements of the ratios of identified hadrons (pi,K,p,Lambda) in Au+Au collisions at sqrt(s_NN) = 200 GeV as a function of both collision centrality and transverse momentum (p_T). Ratios of anti-baryon to baryon yields are independent of p_T within 2<p_T <6 GeV/c indicating that, for such a range, our measurements are inconsistent with theoretical pQCD calculations predicting a decrease due to a stronger contribution from valence quark scattering. For both strange and non-strange species, a strong baryon enhancement relative to meson yields is observed as a function of collision centrality in this intermediate p_T region, leading to p/pi and Lambda/K ratios greater than unity. The nuclear modification factor, R_cp (central relative to peripheral collisions), is used to illustrate the interplay between jet quenching and hadron production. The physics implications of these measurements are discussed with reference to different theoretical models.Comment: 5 pages, 4 figures. Proceedings of Quark Matter 2004 Conference, Jan 2004, Oakland, USA. Submitted to Journal of Physics

    High-pTp_{T} electron distributions in d+Au and p+p collisions at RHIC

    Full text link
    We present preliminary measurements of electron and positron spectra in d+Au and p+p collisions at sNN=200\sqrt{s_{NN}}=200 GeV for 1.5<pT<7.01.5 < p_{T} < 7.0 GeV/c. These measurements were carried out using the STAR Time Projection Chamber (TPC) and the Barrel Electromagnetic calorimeter (EMC). Overall hadron rejection factors in the range of 10510^{5} have been achieved. In this work we describe the measurement technique used to discriminate electrons from hadrons and compare the results for single electron spectra with Pythia based pQCD calculations for electrons from heavy-quark semi-leptonic decays.Comment: Quark Matter 2004 conference proceeding
    corecore