86 research outputs found

    The Physical Properties of LBGs at z>5: Outflows and the "pre-enrichment problem"

    Full text link
    We discuss the properties of Lyman Break galaxies (LBGs) at z>5 as determined from disparate fields covering approximately 500 sq. arcmin. While the broad characteristics of the LBG population has been discussed extensively in the literature, such as luminosity functions and clustering amplitude, we focus on the detailed physical properties of the sources in this large survey (>100 with spectroscopic redshifts). Specifically, we discuss ensemble mass estimates, stellar mass surface densities, core phase space densities, star-formation intensities, characteristics of their stellar populations, etc as obtained from multi-wavelength data (rest-frame UV through optical) for a subsample of these galaxies. In particular, we focus on evidence that these galaxies drive vigorous outflows and speculate that this population may solve the so-called ``pre-enrichment problem''. The general picture that emerges from these studies is that these galaxies, observed about 1 Gyr after the Big Bang, have properties consistent with being the progenitors of the densest stellar systems in the local Universe -- the centers of old bulges and early type galaxies.Comment: 4 pages, to appear in "Pathways Through an Eclectic Universe", J. H. Knappen, T. J. Mahoney, and A. Vazedekis (Eds.), ASP Conf. Ser., 200

    Deep VLT V-band Imaging of the Field of a z=10 Candidate Galaxy: Below the Lyman Limit?

    Full text link
    We present a deep 16.8 ks V-band image of the field of a candidate z=10 galaxy magnified by the foreground (z=0.25) cluster A1835. The image was obtained with FORS1 on VLT-Kueyen to test whether the V-band lies below the Lyman limit for this very high redshift candidate. A detection would unambiguously rule out that the source is at z=10. The 3sigma detection limit of the image in the area of the z=10 candidate is V_AB=28.0 mag in a 2 arcsec diameter aperture (about 3 times the seeing FWHM of 0.7 arcsec). No source at the position of the candidate galaxy is detected down to this limit. Formally, this is consistent with the V-band probing below the Lyman limit in the rest-frame of a z=10 source. However, given the recent non-detection of the object in a deep H-band exposure with NIRI on Gemini North down to H_AB=26.0 mag (3sigma in a 1.4 arcsec aperture) and concerns about the detection of the reported associated emission line, it may be possible that this source is spurious. We discuss several astrophysical possibilities to explain the puzzling nature of this source and find none of them compelling.Comment: accepted for publication in Ap

    The size-star formation relation of massive galaxies at 1.5<z<2.5

    Full text link
    We study the relation between size and star formation activity in a complete sample of 225 massive (M > 5 x 10^10 Msun) galaxies at 1.5<z<2.5, selected from the FIREWORKS UV-IR catalog of the CDFS. Based on stellar population synthesis model fits to the observed restframe UV-NIR SEDs, and independent MIPS 24 micron observations, 65% of galaxies are actively forming stars, while 35% are quiescent. Using sizes derived from 2D surface brightness profile fits to high resolution (FWHM_{PSF}~0.45 arcsec) groundbased ISAAC data, we confirm and improve the significance of the relation between star formation activity and compactness found in previous studies, using a large, complete mass-limited sample. At z~2, massive quiescent galaxies are significantly smaller than massive star forming galaxies, and a median factor of 0.34+/-0.02 smaller than galaxies of similar mass in the local universe. 13% of the quiescent galaxies are unresolved in the ISAAC data, corresponding to sizes <1 kpc, more than 5 times smaller than galaxies of similar mass locally. The quiescent galaxies span a Kormendy relation which, compared to the relation for local early types, is shifted to smaller sizes and brighter surface brightnesses and is incompatible with passive evolution. The progenitors of the quiescent galaxies, were likely dominated by highly concentrated, intense nuclear star bursts at z~3-4, in contrast to star forming galaxies at z~2 which are extended and dominated by distributed star formation.Comment: 6 pages, 4 figures, accepted for publication in Ap

    The Far-Infrared, UV and Molecular Gas Relation in Galaxies up to z=2.5

    Full text link
    We use the infrared excess (IRX) FIR/UV luminosity ratio to study the relation between the effective UV attenuation (A_IRX) and the UV spectral slope (beta) in a sample of 450 1<z<2.5 galaxies. The FIR data is from very deep Herschel observations in the GOODS fields that allow us to detect galaxies with SFRs typical of galaxies with log(M)>9.3. Thus, we are able to study galaxies on and even below the main SFR-stellar mass relation (main sequence). We find that main sequence galaxies form a tight sequence in the IRX--beta plane, which has a flatter slope than commonly used relations. This slope favors a SMC-like UV extinction curve, though the interpretation is model dependent. The scatter in the IRX-beta plane, correlates with the position of the galaxies in the SFR-M plane. Using a smaller sample of galaxies with CO gas masses, we study the relation between the UV attenuation and the molecular gas content. We find a very tight relation between the scatter in the IRX-beta plane and the specific attenuation (S_A), a quantity that represents the attenuation contributed by the molecular gas mass per young star. S_A is sensitive to both the geometrical arrangement of stars and dust, and to the compactness of the star forming regions. We use this empirical relation to derive a method for estimating molecular gas masses using only widely available integrated rest-frame UV and FIR photometry. The method produces gas masses with an accuracy between 0.12-0.16 dex in samples of normal galaxies between z~0 and z~1.5. Major mergers and sub-millimeter galaxies follow a different S_A relation.Comment: 11 pages, 6 pages appendix, 11 figures, accepted to Ap

    SINFONI Integral Field Spectroscopy of z~2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution

    Get PDF
    We present 0.5" resolution near-IR integral field spectroscopy of the Ha line emission of 14 z~2 UV-selected BM/BX galaxies obtained with SINFONI at ESO/VLT. The mean Ha half-light radius r_1/2 is about 4kpc and line emission is detected over > ~20kpc in several sources. In 9 sources, we detect spatially-resolved velocity gradients, from 40 to 410 km/s over ~10kpc. The observed kinematics of the larger systems are consistent with orbital motions. Four galaxies are well described by rotating disks with clumpy morphologies and we extract rotation curves out to radii > ~10kpc. One or two galaxies exhibit signatures more consistent with mergers. Analyzing all 14 galaxies in the framework of rotating disks, we infer mean inclination- and beam-corrected maximum circular velocities v_c of 180+-90 km/s and dynamical masses of (0.5-25)x10^10 Msun within r_1/2. On average, the dynamical masses are consistent with photometric stellar masses assuming a Chabrier/Kroupa IMF but too small for a 0.1-100 Msun Salpeter IMF. The specific angular momenta of our BM/BX galaxies are similar to those of local late-type galaxies. The specific angular momenta of their baryons are comparable to those of their dark matter halos. Extrapolating from the average v_c at 10kpc, the virial mass of the typical halo of a galaxy in our sample is 10^(11.7+-0.5) Msun. Kinematic modeling of the 3 best cases implies a ratio of v_c to local velocity dispersion of order 2-4 and accordingly a large geometric thickness. We argue that this suggests a mass accretion (alternatively, gas exhaustion) timescale of ~500Myr. We also argue that if our BM/BX galaxies were initially gas rich, their clumpy disks will subsequently lose their angular momentum and form compact bulges on a timescale of ~1 Gyr. [ABRIDGED]Comment: Accepted for publication in the Astrophysical Journal. 17 pages, 5 color figure

    Dynamical Properties of z~2 Star Forming Galaxies and a Universal Star Formation Relation

    Get PDF
    We present the first comparison of the dynamical properties of different samples of z~1.4-3.4 star forming galaxies from spatially resolved imaging spectroscopy from SINFONI/VLT integral field spectroscopy and IRAM CO millimeter interferometry. Our samples include 16 rest-frame UV-selected, 16 rest-frame optically-selected and 13 submillimeter galaxies (SMGs). We find that restframe UV- and optically bright (K<20) z~2 star forming galaxies are dynamically similar, and follow the same velocity-size relation as disk galaxies at z~0. In the theoretical framework of rotating disks forming from dissipative collapse in dark matter halos, the two samples require a spin parameter ranging from 0.06 to 0.2. In contrast bright SMGs have larger velocity widths and are much more compact. Hence, SMGs have lower angular momenta and higher matter densities than either of the UV- or optically selected populations. This indicates that dissipative major mergers may dominate the SMGs population, resulting in early spheroids, and that the majority of UV/optically bright galaxies have evolved less violently [...]. These early disks may later evolve into spheroids via disk instabilities or mergers. Because of their small sizes and large densities, SMGs lie at the high surface density end of a universal (out to z=2.5) "Schmidt-Kennicutt" relation between gas surface density and star formation rate surface density with a slope of ~1.7.Comment: 14 pages, 3 figures, accepted for publication in ApJ, minor typos correcte

    HST and Spitzer imaging of red and blue galaxies at z~2.5: A correlation between size and star formation activity from compact quiescent galaxies to extended star forming galaxies

    Full text link
    We present HST NICMOS+ACS and Spitzer IRAC+MIPS observations of 41 galaxies at 2<z<3.5 in the FIRES MS1054 field with red and blue rest-frame optical colors. About half of the galaxies are very compact (effective radii r_e < 1 kpc) at rest-frame optical wavelengths, the others are extended (1< r_e < 10 kpc). For reference, 1 kpc corresponds to 0.12 arcsec at z=2.5 in the adopted cosmology. We separate actively star forming galaxies from quiescent galaxies by modeling their rest-frame UV-NIR SEDs. The star forming galaxies span the full range of sizes, while the quiescent galaxies all have r_e<2kpc. In the redshift range where MIPS 24 micron imaging is a sensitive probe of re-radiated dust emission (z<2.5), the 24 micron fluxes confirm that the light of the small quiescent galaxies is dominated by old stars, rather than dust-enshrouded star formation or AGN activity. The inferred surface mass densities and velocity dispersions for the quiescent galaxies are very high compared to those in local galaxies. The galaxies follow a Kormendy relation (between surface brightness and size) with approximately the same slope as locally, but shifted to brighter surface brightnesses, consistent with a mean stellar formation redshift of z_f~5. This paper demonstrates a direct relation between star formation activity and size at z~2.5, and the existence of a significant population of massive, extremely dense, old stellar systems without readily identifiable counterparts in the local universe.Comment: Accepted for publication in Ap

    The Color Magnitude Distribution of Field Galaxies to z~3: the evolution and modeling of the blue sequence

    Full text link
    Using deep NIR VLT/ISAAC and optical HST/WFPC2 imaging in the fields of the HDFS and MS1054-03, we study the rest-frame UV-to-optical colors and magnitudes of galaxies to z~3. While there is no evidence for a red sequence at z~3, there does appear to be a well-defined color-magnitude relation (CMR) for blue galaxies at all redshifts, with more luminous galaxies having redder U-V colors. The slope of the blue CMR is independent of redshift d(U-V)/dMV = -0.09 (0.01) and can be explained by a correlation of dust-reddening with luminosity. The average color at fixed luminosity reddens strongly \Delta(U-V) = 0.75 from z~3 to z=0, much of which can be attributed to aging of the stars. The color scatter of the blue sequence is relatively small sigma(U-V) = 0.25 (0.03) and constant to z~3, but notably asymmetrical with a sharp blue ridge and a wing towards redder colors. We explore sets of star formation histories to study the constraints placed by the shape of the scatter at z=2-3. One particular set of models, episodic star formation, reproduces the detailed properties very well. For a two-state model with high and low star formation, the duty cycle is constrained to be > 40% and the contrast between the states must be a factor > 5 (or a scatter in log(SFR) of > 0.35 dex around the mean). However, episodic models do not explain the observed tail of very red galaxies, primarily Distant Red Galaxies (DRGs), which may have ceased star formation altogether or are more heavily obscured. Finally, the relative number density of red, luminous MV < -20.5 galaxies increases by a factor of ~ 6 from z = 2.7 to z = 0.5, as does their contribution to the total rest-frame V-band luminosity density. We are likely viewing the progressive formation of red, passively evolving galaxies.Comment: 29 pages, 24 figures, in emulateapj style. Abstract is abridged. Some postscript figures are compressed. accepted for publication in ApJ (scheduled for August 20, 2007, v665n 2 issue
    corecore