9,748 research outputs found
Finite-Size Scaling of the Level Compressibility at the Anderson Transition
We compute the number level variance and the level
compressibility from high precision data for the Anderson model of
localization and show that they can be used in order to estimate the critical
properties at the metal-insulator transition by means of finite-size scaling.
With , , and denoting, respectively, system size, disorder strength,
and the average number of levels in units of the mean level spacing, we find
that both and the integrated obey finite-size scaling.
The high precision data was obtained for an anisotropic three-dimensional
Anderson model with disorder given by a box distribution of width . We
compute the critical exponent as and the critical
disorder as in agreement with previous
transfer-matrix studies in the anisotropic model. Furthermore, we find
at the metal-insulator transition in very close
agreement with previous results.Comment: Revised version of paper, to be published: Eur. Phys. J. B (2002
Concurrent magneto-optical imaging and magneto-transport readout of electrical switching of insulating antiferromagnetic thin films
We demonstrate stable and reversible current induced switching of large-area
() antiferromagnetic domains in NiO/Pt by performing concurrent
transport and magneto-optical imaging measurements in an adapted Kerr
microscope. By correlating the magnetic images of the antiferromagnetic domain
changes and magneto-transport signal response in these current-induced
switching experiments, we disentangle magnetic and non-magnetic contributions
to the transport signal. Our table-top approach establishes a robust procedure
to subtract the non-magnetic contributions in the transport signal and extract
the spin-Hall magnetoresistance response associated with the switching of the
antiferromagnetic domains enabling one to deduce details of the
antiferromagnetic switching from simple transport measurements.Comment: 12+2 pages, 3+2 figures, V2: Corrected equation for R_transv
calculation, results unaffecte
Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA
(Abridged) Combining the deepest Herschel extragalactic surveys (PEP,
GOODS-H, HerMES), and Monte Carlo mock catalogs, we explore the robustness of
dust mass estimates based on modeling of broad band spectral energy
distributions (SEDs) with two popular approaches: Draine & Li (2007, DL07) and
a modified black body (MBB). As long as the observed SED extends to at least
160-200 micron in the rest frame, M(dust) can be recovered with a >3 sigma
significance and without the occurrence of systematics. An average offset of a
factor ~1.5 exists between DL07- and MBB-based dust masses, based on consistent
dust properties. At the depth of the deepest Herschel surveys (in the GOODS-S
field) it is possible to retrieve dust masses with a S/N>=3 for galaxies on the
main sequence of star formation (MS) down to M(stars)~1e10 [M(sun)] up to z~1.
At higher redshift (z<=2) the same result is achieved only for objects at the
tip of the MS or lying above it. Molecular gas masses, obtained converting
M(dust) through the metallicity-dependent gas-to-dust ratio delta(GDR), are
consistent with those based on the scaling of depletion time, and on CO
spectroscopy. Focusing on CO-detected galaxies at z>1, the delta(GDR)
dependence on metallicity is consistent with the local relation. We combine
far-IR Herschel data and sub-mm ALMA expected fluxes to study the advantages of
a full SED coverage.Comment: Accepted for publication in Astronomy and Astrophysics. Some figures
have degraded quality for filesize reason
Localization of non-interacting electrons in thin layered disordered systems
Localization of electronic states in disordered thin layered systems with b
layers is studied within the Anderson model of localization using the
transfer-matrix method and finite-size scaling of the inverse of the smallest
Lyapunov exponent. The results support the one-parameter scaling hypothesis for
disorder strengths W studied and b=1,...,6. The obtained results for the
localization length are in good agreement with both the analytical results of
the self-consistent theory of localization and the numerical scaling studies of
the two-dimensional Anderson model. The localization length near the band
center grows exponentially with b for fixed W but no
localization-delocalization transition takes place.Comment: 6 pages, 5 figure
Impact of Sodium Layer variations on the performance of the E-ELT MCAO module
Multi-Conjugate Adaptive Optics systems based on sodium Laser Guide Stars may
exploit Natural Guide Stars to solve intrinsic limitations of artificial
beacons (tip-tilt indetermination and anisoplanatism) and to mitigate the
impact of the sodium layer structure and variability. The sodium layer may also
have transverse structures leading to differential effects among Laser Guide
Stars. Starting from the analysis of the input perturbations related to the
Sodium Layer variability, modeled directly on measured sodium layer profiles,
we analyze, through a simplified end-to-end simulation code, the impact of the
low/medium orders induced on global performance of the European Extremely Large
Telescope Multi-Conjugate Adaptive Optics module MAORY.Comment: 7 pages, 5 figures, SPIE conference Proceedin
A laser gyroscope system to detect the Gravito-Magnetic effect on Earth
Large scale square ring laser gyros with a length of four meters on each side
are approaching a sensitivity of 1x10^-11 rad/s/sqrt(Hz). This is about the
regime required to measure the gravitomagnetic effect (Lense Thirring) of the
Earth. For an ensemble of linearly independent gyros each measurement signal
depends upon the orientation of each single axis gyro with respect to the
rotational axis of the Earth. Therefore at least 3 gyros are necessary to
reconstruct the complete angular orientation of the apparatus. In general, the
setup consists of several laser gyroscopes (we would prefer more than 3 for
sufficient redundancy), rigidly referenced to each other. Adding more gyros for
one plane of observation provides a cross-check against intra-system biases and
furthermore has the advantage of improving the signal to noise ratio by the
square root of the number of gyros. In this paper we analyze a system of two
pairs of identical gyros (twins) with a slightly different orientation with
respect to the Earth axis. The twin gyro configuration has several interesting
properties. The relative angle can be controlled and provides a useful null
measurement. A quadruple twin system could reach a 1% sensitivity after 3:2
years of data, provided each square ring has 6 m length on a side, the system
is shot noise limited and there is no source for 1/f- noise.Comment: 9 pages, 6 figures. 2010 Honourable mention of the Gravity Research
Foundation; to be published on J. Mod. Phys.
Phase Control of Squeezed Vacuum States of Light in Gravitational Wave Detectors
Quantum noise will be the dominant noise source for the advanced laser
interferometric gravitational wave detectors currently under construction.
Squeezing-enhanced laser interferometers have been recently demonstrated as a
viable technique to reduce quantum noise. We propose two new methods of
generating an error signal for matching the longitudinal phase of squeezed
vacuum states of light to the phase of the laser interferometer output field.
Both provide a superior signal to the one used in previous demonstrations of
squeezing applied to a gravitational-wave detector. We demonstrate that the new
signals are less sensitive to misalignments and higher order modes, and result
in an improved stability of the squeezing level. The new signals also offer the
potential of reducing the overall rms phase noise and optical losses, each of
which would contribute to achieving a higher level of squeezing. The new error
signals are a pivotal development towards realizing the goal of 6 dB and more
of squeezing in advanced detectors and beyond
Is your EPL attractive? Classification of publications through download statistics
Here we consider the download statistics of EPL publications. We find that
papers in the journal are characterised by fast accumulations of downloads
during the first couple of months after publication, followed by slower rates
thereafter, behaviour which can be represented by a model with predictive
power. We also find that individual papers can be classified in various ways,
allowing us to compare categories for open-access and non-open-access papers.
For example, for the latter publications, which comprise the bulk of EPL
papers, a small proportion (2%) display intense bursts of download activity,
possibly following an extended period of less remarkable behaviour. About 18%
have an especially high degree of attractiveness over and above what is typical
for the journal. One can also classify the ageing of attractiveness by
examining download half-lives. Approximately 18% have strong interest
initially, waning in time. A further 20% exhibit "delayed recognition" with
relatively late spurs in download activity. Although open-access papers enjoy
more downloads on average, the proportions falling into each category are
similar.Comment: 6 pages, 8 figures, accepted for publication in EP
The substantive and practical significance of citation impact differences between institutions: Guidelines for the analysis of percentiles using effect sizes and confidence intervals
In our chapter we address the statistical analysis of percentiles: How should
the citation impact of institutions be compared? In educational and
psychological testing, percentiles are already used widely as a standard to
evaluate an individual's test scores - intelligence tests for example - by
comparing them with the percentiles of a calibrated sample. Percentiles, or
percentile rank classes, are also a very suitable method for bibliometrics to
normalize citations of publications in terms of the subject category and the
publication year and, unlike the mean-based indicators (the relative citation
rates), percentiles are scarcely affected by skewed distributions of citations.
The percentile of a certain publication provides information about the citation
impact this publication has achieved in comparison to other similar
publications in the same subject category and publication year. Analyses of
percentiles, however, have not always been presented in the most effective and
meaningful way. New APA guidelines (American Psychological Association, 2010)
suggest a lesser emphasis on significance tests and a greater emphasis on the
substantive and practical significance of findings. Drawing on work by Cumming
(2012) we show how examinations of effect sizes (e.g. Cohen's d statistic) and
confidence intervals can lead to a clear understanding of citation impact
differences
Pushing context-awareness down to the core: moreflexibility for the PerLa language
Information technology is increasingly pervading our envi-
ronment, making real Mark Weiserâs vision of a âdisappear-
ing technologyâ. The work described in this paper focuses
on using context to enable pervasive system personaliza-
tion, allowing context-aware sensor-data tailoring. Since
sensor networks, besides data collection, are also able to pro-
duce active behaviours, the tailoring capabilities are also ex-
tended to these, thus applying context-awareness to generic
system operations. Moreover, because the number of pos-
sible context can grow rapidly with the complexity of the
application, the design phase is also supported by the possi-
bility to speed-up and modularize the definition of the data
and operations associated with each specific context, pro-
ducing a support tool that eases the job of the designers of
modern context-aware pervasive systems
- âŠ