9,748 research outputs found

    Finite-Size Scaling of the Level Compressibility at the Anderson Transition

    Full text link
    We compute the number level variance ÎŁ2\Sigma_{2} and the level compressibility χ\chi from high precision data for the Anderson model of localization and show that they can be used in order to estimate the critical properties at the metal-insulator transition by means of finite-size scaling. With NN, WW, and LL denoting, respectively, system size, disorder strength, and the average number of levels in units of the mean level spacing, we find that both χ(N,W)\chi(N,W) and the integrated ÎŁ2\Sigma_{2} obey finite-size scaling. The high precision data was obtained for an anisotropic three-dimensional Anderson model with disorder given by a box distribution of width W/2W/2. We compute the critical exponent as Μ≈1.45±0.12\nu \approx 1.45 \pm 0.12 and the critical disorder as Wc≈8.59±0.05W_{\rm c} \approx 8.59 \pm 0.05 in agreement with previous transfer-matrix studies in the anisotropic model. Furthermore, we find χ≈0.28±0.06\chi\approx 0.28 \pm 0.06 at the metal-insulator transition in very close agreement with previous results.Comment: Revised version of paper, to be published: Eur. Phys. J. B (2002

    Concurrent magneto-optical imaging and magneto-transport readout of electrical switching of insulating antiferromagnetic thin films

    Get PDF
    We demonstrate stable and reversible current induced switching of large-area (>100  Όm2> 100\;\mu m^2) antiferromagnetic domains in NiO/Pt by performing concurrent transport and magneto-optical imaging measurements in an adapted Kerr microscope. By correlating the magnetic images of the antiferromagnetic domain changes and magneto-transport signal response in these current-induced switching experiments, we disentangle magnetic and non-magnetic contributions to the transport signal. Our table-top approach establishes a robust procedure to subtract the non-magnetic contributions in the transport signal and extract the spin-Hall magnetoresistance response associated with the switching of the antiferromagnetic domains enabling one to deduce details of the antiferromagnetic switching from simple transport measurements.Comment: 12+2 pages, 3+2 figures, V2: Corrected equation for R_transv calculation, results unaffecte

    Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA

    Full text link
    (Abridged) Combining the deepest Herschel extragalactic surveys (PEP, GOODS-H, HerMES), and Monte Carlo mock catalogs, we explore the robustness of dust mass estimates based on modeling of broad band spectral energy distributions (SEDs) with two popular approaches: Draine & Li (2007, DL07) and a modified black body (MBB). As long as the observed SED extends to at least 160-200 micron in the rest frame, M(dust) can be recovered with a >3 sigma significance and without the occurrence of systematics. An average offset of a factor ~1.5 exists between DL07- and MBB-based dust masses, based on consistent dust properties. At the depth of the deepest Herschel surveys (in the GOODS-S field) it is possible to retrieve dust masses with a S/N>=3 for galaxies on the main sequence of star formation (MS) down to M(stars)~1e10 [M(sun)] up to z~1. At higher redshift (z<=2) the same result is achieved only for objects at the tip of the MS or lying above it. Molecular gas masses, obtained converting M(dust) through the metallicity-dependent gas-to-dust ratio delta(GDR), are consistent with those based on the scaling of depletion time, and on CO spectroscopy. Focusing on CO-detected galaxies at z>1, the delta(GDR) dependence on metallicity is consistent with the local relation. We combine far-IR Herschel data and sub-mm ALMA expected fluxes to study the advantages of a full SED coverage.Comment: Accepted for publication in Astronomy and Astrophysics. Some figures have degraded quality for filesize reason

    Localization of non-interacting electrons in thin layered disordered systems

    Full text link
    Localization of electronic states in disordered thin layered systems with b layers is studied within the Anderson model of localization using the transfer-matrix method and finite-size scaling of the inverse of the smallest Lyapunov exponent. The results support the one-parameter scaling hypothesis for disorder strengths W studied and b=1,...,6. The obtained results for the localization length are in good agreement with both the analytical results of the self-consistent theory of localization and the numerical scaling studies of the two-dimensional Anderson model. The localization length near the band center grows exponentially with b for fixed W but no localization-delocalization transition takes place.Comment: 6 pages, 5 figure

    Impact of Sodium Layer variations on the performance of the E-ELT MCAO module

    Full text link
    Multi-Conjugate Adaptive Optics systems based on sodium Laser Guide Stars may exploit Natural Guide Stars to solve intrinsic limitations of artificial beacons (tip-tilt indetermination and anisoplanatism) and to mitigate the impact of the sodium layer structure and variability. The sodium layer may also have transverse structures leading to differential effects among Laser Guide Stars. Starting from the analysis of the input perturbations related to the Sodium Layer variability, modeled directly on measured sodium layer profiles, we analyze, through a simplified end-to-end simulation code, the impact of the low/medium orders induced on global performance of the European Extremely Large Telescope Multi-Conjugate Adaptive Optics module MAORY.Comment: 7 pages, 5 figures, SPIE conference Proceedin

    A laser gyroscope system to detect the Gravito-Magnetic effect on Earth

    Full text link
    Large scale square ring laser gyros with a length of four meters on each side are approaching a sensitivity of 1x10^-11 rad/s/sqrt(Hz). This is about the regime required to measure the gravitomagnetic effect (Lense Thirring) of the Earth. For an ensemble of linearly independent gyros each measurement signal depends upon the orientation of each single axis gyro with respect to the rotational axis of the Earth. Therefore at least 3 gyros are necessary to reconstruct the complete angular orientation of the apparatus. In general, the setup consists of several laser gyroscopes (we would prefer more than 3 for sufficient redundancy), rigidly referenced to each other. Adding more gyros for one plane of observation provides a cross-check against intra-system biases and furthermore has the advantage of improving the signal to noise ratio by the square root of the number of gyros. In this paper we analyze a system of two pairs of identical gyros (twins) with a slightly different orientation with respect to the Earth axis. The twin gyro configuration has several interesting properties. The relative angle can be controlled and provides a useful null measurement. A quadruple twin system could reach a 1% sensitivity after 3:2 years of data, provided each square ring has 6 m length on a side, the system is shot noise limited and there is no source for 1/f- noise.Comment: 9 pages, 6 figures. 2010 Honourable mention of the Gravity Research Foundation; to be published on J. Mod. Phys.

    Phase Control of Squeezed Vacuum States of Light in Gravitational Wave Detectors

    Full text link
    Quantum noise will be the dominant noise source for the advanced laser interferometric gravitational wave detectors currently under construction. Squeezing-enhanced laser interferometers have been recently demonstrated as a viable technique to reduce quantum noise. We propose two new methods of generating an error signal for matching the longitudinal phase of squeezed vacuum states of light to the phase of the laser interferometer output field. Both provide a superior signal to the one used in previous demonstrations of squeezing applied to a gravitational-wave detector. We demonstrate that the new signals are less sensitive to misalignments and higher order modes, and result in an improved stability of the squeezing level. The new signals also offer the potential of reducing the overall rms phase noise and optical losses, each of which would contribute to achieving a higher level of squeezing. The new error signals are a pivotal development towards realizing the goal of 6 dB and more of squeezing in advanced detectors and beyond

    Is your EPL attractive? Classification of publications through download statistics

    Full text link
    Here we consider the download statistics of EPL publications. We find that papers in the journal are characterised by fast accumulations of downloads during the first couple of months after publication, followed by slower rates thereafter, behaviour which can be represented by a model with predictive power. We also find that individual papers can be classified in various ways, allowing us to compare categories for open-access and non-open-access papers. For example, for the latter publications, which comprise the bulk of EPL papers, a small proportion (2%) display intense bursts of download activity, possibly following an extended period of less remarkable behaviour. About 18% have an especially high degree of attractiveness over and above what is typical for the journal. One can also classify the ageing of attractiveness by examining download half-lives. Approximately 18% have strong interest initially, waning in time. A further 20% exhibit "delayed recognition" with relatively late spurs in download activity. Although open-access papers enjoy more downloads on average, the proportions falling into each category are similar.Comment: 6 pages, 8 figures, accepted for publication in EP

    The substantive and practical significance of citation impact differences between institutions: Guidelines for the analysis of percentiles using effect sizes and confidence intervals

    Full text link
    In our chapter we address the statistical analysis of percentiles: How should the citation impact of institutions be compared? In educational and psychological testing, percentiles are already used widely as a standard to evaluate an individual's test scores - intelligence tests for example - by comparing them with the percentiles of a calibrated sample. Percentiles, or percentile rank classes, are also a very suitable method for bibliometrics to normalize citations of publications in terms of the subject category and the publication year and, unlike the mean-based indicators (the relative citation rates), percentiles are scarcely affected by skewed distributions of citations. The percentile of a certain publication provides information about the citation impact this publication has achieved in comparison to other similar publications in the same subject category and publication year. Analyses of percentiles, however, have not always been presented in the most effective and meaningful way. New APA guidelines (American Psychological Association, 2010) suggest a lesser emphasis on significance tests and a greater emphasis on the substantive and practical significance of findings. Drawing on work by Cumming (2012) we show how examinations of effect sizes (e.g. Cohen's d statistic) and confidence intervals can lead to a clear understanding of citation impact differences

    Pushing context-awareness down to the core: moreflexibility for the PerLa language

    Get PDF
    Information technology is increasingly pervading our envi- ronment, making real Mark Weiser’s vision of a “disappear- ing technology”. The work described in this paper focuses on using context to enable pervasive system personaliza- tion, allowing context-aware sensor-data tailoring. Since sensor networks, besides data collection, are also able to pro- duce active behaviours, the tailoring capabilities are also ex- tended to these, thus applying context-awareness to generic system operations. Moreover, because the number of pos- sible context can grow rapidly with the complexity of the application, the design phase is also supported by the possi- bility to speed-up and modularize the definition of the data and operations associated with each specific context, pro- ducing a support tool that eases the job of the designers of modern context-aware pervasive systems
    • 

    corecore