19 research outputs found

    Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach

    Get PDF
    We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits, which constitute a natural platform for such non-binary problems. Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering, including Hamiltonian formulation of the algorithm, analysis of its performance, identification of a suitable level structure for 87Sr and specific gate design. We show the qudit implementation is superior to the qubit encoding as quantified by the gate count. For single layer QAOA, we also prove (conjecture) a lower bound of 0.6367 (0.6699) for the approximation ratio on 3-regular graphs. Our numerical studies evaluate the algorithm's performance by considering complete and Erdős-Rényi graphs of up to 7 vertices and clusters. We find that in all cases the QAOA surpasses the Swamy bound 0.7666 for the approximation ratio for QAOA depths p≥2. Finally, by analysing the effect of errors when solving complete graphs we find that their inclusion severely limits the algorithm's performance

    Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach

    Get PDF
    We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits, which constitute a natural platform for such non-binary problems. Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering, including Hamiltonian formulation of the algorithm, analysis of its performance, identification of a suitable level structure for 87Sr and specific gate design. We show the qudit implementation is superior to the qubit encoding as quantified by the gate count. For single layer QAOA, we also prove (conjecture) a lower bound of 0.6367 (0.6699) for the approximation ratio on 3-regular graphs. Our numerical studies evaluate the algorithm’s performance by considering complete and Erdős-Rényi graphs of up to 7 vertices and clusters. We find that in all cases the QAOA surpasses the Swamy bound 0.7666 for the approximation ratio for QAOA depths p ≥ 2. Finally, by analysing the effect of errors when solving complete graphs we find that their inclusion severely limits the algorithm’s performance

    Simultaneous Magneto-Optical Trapping of Two Lithium Isotopes

    Get PDF
    We confine 4 10^8 fermionic 6Li atoms simultaneously with 9 10^9 bosonic 7Li atoms in a magneto-optical trap based on an all-semiconductor laser system. We optimize the two-isotope sample for sympathetic evaporative cooling. This is an essential step towards the production of a quantum-degenerate gas of fermionic lithium atoms.Comment: 4 pages, 3 figure

    Modern agglutinated foraminifera from the HovgĂĄrd ridge, fram strait, west of Spitsbergen: Evidence for a deep bottom current

    Get PDF
    Deep-water agglutinated foraminifera on the crest of the Hovgârd Ridge, west of Spitsbergen, consist mostly of large tubular astrorhizids. At a boxcore station collected from the crest of Hovgârd Ridge at a water depth of 1169 m, the sediment surface was covered with patches of large (1 mm diameter) tubular forms, belonging mostly to the species Astrorhiza crassatina Brady, with smaller numbers of Saccorhiza, Hyperammina, and Psammosiphonella. Non-tubutar species consisted mainly of opportunistic forms, such as Psammosphaera and Reophax. The presence of large suspension-feeding tubular genera as well as opportunistic forms point to the presence of deep currents at this locality that are strong enough to disturb the benthic fauna. This is confirmed by data obtained from sediment echosounding, which exhibit lateral variation in relative sedimentation rates within the Pleistocene sedimentary drape covering the ridge, indicative of winnowing in a south-easterly direction

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Terrestrial Very-Long-Baseline Atom Interferometry:Workshop Summary

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Niche WNT5A regulates the actin cytoskeleton during regeneration of hematopoietic stem cells

    No full text
    Here, we show that the Wnt5a-haploinsufficient niche regenerates dysfunctional HSCs, which do not successfully engraft in secondary recipients. RNA sequencing of the regenerated donor Lin(-)SCA-1(+) KIT+ (LSK) cells shows dysregulated expression of ZEB1-associated genes involved in the small GTPase-dependent actin polymerization pathway. Misexpression of DOCK2, WAVE2, and activation of CDC42 results in apolar F-actin localization, leading to defects in adhesion, migration and homing of HSCs regenerated in a Wnt5a-haploinsufficient microenvironment. Moreover, these cells show increased differentiation in vitro, with rapid loss of HSC-enriched LSK cells. Our study further shows that the Wnt5a-haploinsufficient environment similarly affects BCR-ABLp(185) leukemia-initiating cells, which fail to generate leukemia in 42% of the studied recipients, or to transfer leukemia to secondary hosts. Thus, we show that WNT5A in the bone marrow niche is required to regenerate HSCs and leukemic cells with functional ability to rearrange the actin cytoskeleton and engraft successfully
    corecore