5,428 research outputs found

    Brownian motion of Massive Particle in a Space with Curvature and Torsion and Crystals with Defects

    Full text link
    We develop a theory of Brownian motion of a massive particle, including the effects of inertia (Kramers' problem), in spaces with curvature and torsion. This is done by invoking the recently discovered generalized equivalence principle, according to which the equations of motion of a point particle in such spaces can be obtained from the Newton equation in euclidean space by means of a nonholonomic mapping. By this principle, the known Langevin equation in euclidean space goes over into the correct Langevin equation in the Cartan space. This, in turn, serves to derive the Kubo and Fokker-Planck equations satisfied by the particle distribution as a function of time in such a space. The theory can be applied to classical diffusion processes in crystals with defects.Comment: LaTeX, http://www.physik.fu-berlin.de/kleinert.htm

    Nonlinear stability of pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions

    Get PDF
    We establish the existence and nonlinear stability of travelling pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions close to the continuum limit. For the verification of the spectral properties, we need to study a functional differential equation of mixed type (MFDE) with unbounded shifts. We avoid the use of exponential dichotomies and phase spaces, by building on a technique developed by Bates, Chen and Chmaj for the discrete Nagumo equation. This allows us to transfer several crucial Fredholm properties from the PDE setting to our discrete setting

    Dissimilar response of plant and soil biota communities to long-term nutrient adition in grasslands

    Get PDF
    The long-term effect of fertilizers on plant diversity and productivity is well known, but long-term effects on soil biota communities have received relatively little attention. Here, we used an exceptional long-lasting (>40 years) grassland fertilization experiment to investigate the long-term effect of Ca, N, PK, and NPK addition on the productivity and diversity of both vegetation and soil biota. Whereas plant diversity increased by liming and decreased by N and NPK, the diversity of nematodes, collembolans, mites, and enchytraeids increased by N, PK, or NPK. Fertilization with NPK and PK increased plant biomass and biomass of enchytraeids and collembolans. Biomass of nematodes and earthworms increased by liming. Our results suggest that soil diversity might be driven by plant productivity rather than by plant diversity. This may imply that the selection of measures for restoring or conserving plant diversity may decrease soil biota diversity. This needs to be tested in future experiment

    Dr. Jack Walther -- Cowboy, Veterinarian, AVMA President

    Full text link
    Dr. Jack Walther served as AVMA President in 2003-2004. His contributions to the Western Veterinary Conference and veterinary medicine in general are noted

    Autoparallels From a New Action Principle

    Full text link
    We present a simpler and more powerful version of the recently-discovered action principle for the motion of a spinless point particle in spacetimes with curvature and torsion. The surprising feature of the new principle is that an action involving only the metric can produce an equation of motion with a torsion force, thus changing geodesics to autoparallels. This additional torsion force arises from a noncommutativity of variations with parameter derivatives of the paths due to the closure failure of parallelograms in the presence of torsionComment: Paper in src. Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Read paper directly with Netscape under http://www.physik.fu-berlin.de/~kleinert/kleiner_re243/preprint.htm

    Real-time detection of single electron tunneling using a quantum point contact

    Full text link
    We observe individual tunnel events of a single electron between a quantum dot and a reservoir, using a nearby quantum point contact (QPC) as a charge meter. The QPC is capacitively coupled to the dot, and the QPC conductance changes by about 1% if the number of electrons on the dot changes by one. The QPC is voltage biased and the current is monitored with an IV-convertor at room temperature. We can resolve tunnel events separated by only 8 μ\mus, limited by noise from the IV-convertor. Shot noise in the QPC sets a 25 ns lower bound on the accessible timescales.Comment: 3 pages, 3 figures, submitte
    corecore