259 research outputs found
A Fast Blind Impulse Detector for Bernoulli-Gaussian Noise in Underspread Channel
The Bernoulli-Gaussian (BG) model is practical to characterize impulsive
noises that widely exist in various communication systems. To estimate the BG
model parameters from noise measurements, a precise impulse detection is
essential. In this paper, we propose a novel blind impulse detector, which is
proven to be fast and accurate for BG noise in underspread communication
channels.Comment: v2 to appear in IEEE ICC 2018, Kansas City, MO, USA, May 2018 Minor
erratums added in v
Modeling Profit of Sliced 5G Networks for Advanced Network Resource Management and Slice Implementation
The core innovation in future 5G cellular networksnetwork slicing, aims at
providing a flexible and efficient framework of network organization and
resource management. The revolutionary network architecture based on slices,
makes most of the current network cost models obsolete, as they estimate the
expenditures in a static manner. In this paper, a novel methodology is
proposed, in which a value chain in sliced networks is presented. Based on the
proposed value chain, the profits generated by different slices are analyzed,
and the task of network resource management is modeled as a multiobjective
optimization problem. Setting strong assumptions, this optimization problem is
analyzed starting from a simple ideal scenario. By removing the assumptions
step-by-step, realistic but complex use cases are approached. Through this
progressive analysis, technical challenges in slice implementation and network
optimization are investigated under different scenarios. For each challenge,
some potentially available solutions are suggested, and likely applications are
also discussed
Context-aware Cluster Based Device-to-Device Communication to Serve Machine Type Communications
Billions of Machine Type Communication (MTC) devices are foreseen to be
deployed in next ten years and therefore potentially open a new market for next
generation wireless network. However, MTC applications have different
characteristics and requirements compared with the services provided by legacy
cellular networks. For instance, an MTC device sporadically requires to
transmit a small data packet containing information generated by sensors. At
the same time, due to the massive deployment of MTC devices, it is inefficient
to charge their batteries manually and thus a long battery life is required for
MTC devices. In this sense, legacy networks designed to serve human-driven
traffics in real time can not support MTC efficiently. In order to improve the
availability and battery life of MTC devices, context-aware device-to-device
(D2D) communication is exploited in this paper. By applying D2D communication,
some MTC users can serve as relays for other MTC users who experience bad
channel conditions. Moreover, signaling schemes are also designed to enable the
collection of context information and support the proposed D2D communication
scheme. Last but not least, a system level simulator is implemented to evaluate
the system performance of the proposed technologies and a large performance
gain is shown by the numerical results
- …