947 research outputs found
Dorpsweide Wijk aan Zee : aanbevelingen voor herstel van de dorpsweide
De dorpsweide midden in Wijk aan Zee is in slechte staat, met veel (on)kruid en een relatief open graszode. Het aanzien van de weide wordt niet door iedereen gewaardeerd en de kwaliteit van de weide als grasland voor de paarden wordt als onvoldoende ervaren. Het doel is het herstellen van de weide in oude glorie. In dit rapport staat een beoordeling van dit terrein, met concrete aanbevelingen voor herste
Dynamical Monte Carlo Study of Equilibrium Polymers (II): The Role of Rings
We investigate by means of a number of different dynamical Monte Carlo
simulation methods the self-assembly of equilibrium polymers in dilute,
semidilute and concentrated solutions under good-solvent conditions. In our
simulations, both linear chains and closed loops compete for the monomers,
expanding on earlier work in which loop formation was disallowed. Our findings
show that the conformational properties of the linear chains, as well as the
shape of their size distribution function, are not altered by the formation of
rings. Rings only seem to deplete material from the solution available to the
linear chains. In agreement with scaling theory, the rings obey an algebraic
size distribution, whereas the linear chains conform to a Schultz--Zimm type of
distribution in dilute solution, and to an exponentional distribution in
semidilute and concentrated solution. A diagram presenting different states of
aggregation, including monomer-, ring- and chain-dominated regimes, is given
Modelling of non-steady-state concentration profiles at ISFET-based coulometric sensor—actuator systems
Acid or base concentrations can be determined very rapidly by performing an acid—base titration with coulometrically generated OH− or H+ ions at a noble metal actuator electrode in close proximity to the pH-sensitive gate of an ion-sensitive field effect transistor (ISFET). The ISFET is used as the indicator electrode to detect the equivalence point in the titration curve. Typical values for the time needed to reach the equivalence point are 0.5–10 s for acid or base concentrations ranging from 0.5 × 10−3 to 20 × 10−3 mol l−1.\ud
\ud
A model is presented, giving an analytical description of the diffusion phenomena that occur with the sensor—actuator system. The results of this analytical model description, using linearized concentration gradients, are presented together with the results of numerical simulations. Both results are in good agreement with measurements
Modelling of the migration effect occurring at an ISFET-based coulometric sensor-actuator system
The migration effect, in addition to diffusion, occurring at an ion-selective field-effect transistor (ISFET)-based coulometric sensor-actuator system has been studied. A diffusion-migration model is presented, based on the numerical solution of the Nernst-Planck equations of which a digital simulation is realized. Corresponding experiments were carried out and compared with the simulation. The results are in good agreement with the simulation.\ud
Typical titration times of this system were found to be 0.5–10 s, corresponding to fully dissociated acid concentrations of 0.5×10−3−6.5×10−3 mol 1−1 with excess of supporting electrolyte. Both the simulation and experimental results show that if the concentration of the supporting electrolyte is 20 times higher than that of the species to be titrated, the deviation caused by migration is less than 5% and within the experimental error when pure diffusion is considered. At relatively low concentrations of supporting electrolyte, the migration effect should be taken into account to determine the concentrations of titrated species
Dynamic behaviour of ISFET-based sensor-actuator systems
Rapid acid-base titrations can be performed at the surface of a noble-metal electrode with coulometrically generated ions. An ISFET is used as an indicator electrode to detect the equivalence point in the resulting titration curve. The time needed to reach the equivalence point is typically 0.5 to 10 s for acid/base concentrations ranging from 0.5 × 10−3 to 20 × 10−3 mol l−1.\ud
\ud
A model is presented describing the concentration profiles which appear during the coulometric generation of ions. The result of this model is in good agreement with corresponding measurements. These measurements are carried out with two different actuator electrodes, of which the processing steps are described
Osmotic Pressure of Solutions Containing Flexible Polymers Subject to an Annealed Molecular Weight Distribution
The osmotic pressure in equilibrium polymers (EP) in good solvent is
investigated by means of a three dimensional off-lattice Monte Carlo
simulation. Our results compare well with real space renormalisation group
theory and the osmotic compressibility K \propto \phi \upd \phi/\upd P from
recent light scattering study of systems of long worm-like micelles. We confirm
the scaling predictions for EP based on traditional physics of quenched
monodisperse polymers in the dilute and semidilute limit. Specifically, we find
and, hence, in the semidilute
regime --- in agreement with both theory and experiment. At higher
concentrations where the semidilute blobs become too small and hard-core
interactions and packing effects become dominant, a much stronger increase %
\log(P/\phi)\approx \log(\Nav^2/\phi) \propto \phi is evidenced and,
consequently, the compressibility decreases much more rapidly with than
predicted from semidilute polymer theory, but again in agreement with
experiment.Comment: 7 pages, 4 figures, LATE
Abundance of coral-associated fauna in relation to depth and eutrophication along the leeward side of Curaçao, southern Caribbean
Coral-associated invertebrates contribute much to the biodiversity of Caribbean coral reefs. Although the nature of their symbiotic relation is usually not fully understood, they can cause damage to their hosts, especially when they occur in high densities. The abundance of seven groups of coral-associated invertebrates was investigated on reefs along the leeward side of Curaçao, southern Caribbean. In particular, coral barnacles (Pyrgomatidae), boring mussels (Mytilidae: Leiosolenus spp.), gall crabs (Cryptochiridae), and Christmas tree worms (Serpulidae: Spirobranchus spp.) were recorded together with their host corals by means of a photo survey at four depths (5, 10, 15, 20 m) and across seven sites with high and five sites with low eutrophication values (based on δ15N isotope data). Feather duster worms (Sabellidae: Anamobaea), coral blennies (Chaenopsidae: Acanthemblemaria), and worm snails (Vermetidae: Petaloconchus) were insufficiently abundant for thorough quantitative analyses. The results show a decrease in the number of barnacles and Christmas tree worms per host over depth, which could be related to the availability of their host corals. Sites with high δ15N values show a higher abundance of barnacles and Christmas tree worms per host than sites with low values. This indicates that eutrophication could be favourable for these filter feeding organisms but when their densities become too high, they tend to overgrow their hosts and may become a threat to them
Transient nucleation driven by solvent evaporation
We theoretically investigate homogeneous crystal nucleation in a solution
containing a solute and a volatile solvent. The solvent evaporates from the
solution, thereby continuously increasing the concentration of the solute. We
view it as an idealized model for the far-out-of-equilibrium conditions present
during the liquid-state manufacturing of organic electronic devices. Our model
is based on classical nucleation theory, taking the solvent to be a source of
the transient conditions in which the solute drops out of solution. Other than
that, the solvent is not directly involved in the nucleation process itself. We
approximately solve the kinetic master equations using a combination of Laplace
transforms and singular perturbation theory, providing an analytical expression
for the nucleation flux, predicting that (i) the nucleation flux lags slightly
behind a commonly used quasi-steady-state approximation, an effect that is
governed by two counteracting effects originating from the solvent evaporation:
while a faster evaporation rate results in an increasingly larger influence of
the lag time on the nucleation flux, this lag time itself we find to decrease
with increasing evaporation rate, (ii) the nucleation flux and the
quasi-steady-state nucleation flux are never identical, except trivially in the
stationary limit and (iii) the initial induction period of the nucleation flux,
which we characterize with a generalized induction time, decreases weakly with
the evaporation rate. This indicates that the relevant time scale for
nucleation also decreases with increasing evaporation rate. Our analytical
theory compares favorably with results from numerical evaluation of the
governing kinetic equations
Specific mapping of disease resistance genes in tetraploid cut roses
Control of fungal diseases is a major constraint of cut-rose cultivation in greenhouses and in transportation around the world. Therefore, development of resistant cultivars is a promising way to reduce the use of chemicals required for controlling the diseases. Genetic analyses and breeding for resistance, however, are hampered by the high degree of heterozygosity and the polyploid nature of cultivated roses. Nucleotide-binding site (NBS) profiling of Van der Linden et al. (2004) was used as a tool enabling a more directed way of studying the genetics of resistance to pathogens responsible for diseases such as powdery mildew. NBS profiling is a multiplex screening technique, producing amplified resistance gene (R-gene) and resistance gene analogue (RGA) fragments by using degenerated primers based on the conserved motifs present in the NBS domain of resistance genes. Since RGAs are abundantly distributed and highly polymorphic within the plant genome, NBS profiling generates multiple markers of putative resistance genes. Twelve NBS degenerated primer/ restriction enzyme combinations were used to genotype the whole rose tetraploid K5 population (Yan, 2005) and its parents. To generate RGA profiles, the restriction enzymes: AluI, HaeIII, Mse and RsaI were used in combination with degenerated primers NBS1, NBS3, and NBS5a6. The profiles were dominantly scored resulting in 106 polymorphic RGA markers which segregated in a 1:1 or 3:1 ratio. Uni-and bi-parental simplex markers will be mapped on the two available AFLP/SSR K5 maps (Yan, 2005) with Joinmap 4.0. The resulting parental tetraploid maps will be used to dissect the genetic variation for resistance to powdery mildew resistance. Additional Rosaceae SSRs mentioned in the literature are currently tested on the K5 population to obtain allelic bridges between the tetraploid and diploid genetic maps in rose and related species in order to align them. These bridges will improve cross-ploidy comparisons in roses in order to strengthen cut rose breedin
Experimental and Theoretical Determination of the pH inside the Confinement of a Virus-Like Particle
In biology, a variety of highly ordered nanometer-size protein cages is found. Such structures find increasing application in, for example, vaccination, drug delivery, and catalysis. Understanding the physiochemical properties, particularly inside the confinement of a protein cage, helps to predict the behavior and properties of new materials based on such particles. Here, the relation between the bulk solution pH and the local pH inside a model protein cage, based on virus-like particles (VLPs) built from the coat proteins of the cowpea chlorotic mottle virus, is investigated. The pH is a crucial parameter in a variety of processes and is potentially significantly influenced by the high concentration of charges residing on the interior of the VLPs. The data show a systematic more acidic pH of 0.5 unit inside the VLP compared to that of the bulk solution for pH values above pH 6, which is explained using a theoretical model based on a Donnan equilibrium. The model agrees with the experimental data over almost two orders of magnitude, while below pH 6 the experimental data point to a buffering capacity of the VLP. These results are a first step in a better understanding of the physiochemical conditions inside a protein cage.</p
- …