5 research outputs found
Crystal Structure of an LSD-Bound Human Serotonin Receptor
SummaryThe prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD's key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD's slow binding kinetics may be due to a "lid" formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD's binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD's actions at human serotonin receptors.PaperCli
Dynorphin Controls the Gain of an Amygdalar Anxiety Circuit
Kappa opioid receptors (KORs) are involved in a variety of aversive behavioral states, including anxiety. To date, a circuit-based mechanism for KOR-driven anxiety has not been described. Here, we show that activation of KORs inhibits glutamate release from basolateral amygdala (BLA) inputs to the bed nucleus of the stria terminalis (BNST) and occludes the anxiolytic phenotype seen with optogenetic activation of BLA-BNST projections. In addition, deletion of KORs from amygdala neurons results in an anxiolytic phenotype. Furthermore, we identify a frequency-dependent, optically evoked local dynorphin-induced heterosynaptic plasticity of glutamate inputs in the BNST. We also find that there is cell type specificity to the KOR modulation of the BLA-BNST input with greater KOR-mediated inhibition of BLA dynorphin-expressing neurons. Collectively, these results provide support for a model in which local dynorphin release can inhibit an anxiolytic pathway, providing a discrete therapeutic target for the treatment of anxiety disorders
Crystal Structure of an LSD-Bound Human Serotonin Receptor
The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT(2B). The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slowly from both 5-HT(2B)R and 5-HT(2A)R -- a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD, illuminates key features of its kinetics, stereochemistry, and signaling, and provides a molecular explanation for LSD’s actions at human serotonin receptors