941 research outputs found
Generalized barker sequences
Correlation functions for binary digital systems - binary code and vector analysi
SPS pilot signal design and power transponder analysis, volume 2, phase 3
The problem of pilot signal parameter optimization and the related problem of power transponder performance analysis for the Solar Power Satellite reference phase control system are addressed. Signal and interference models were established to enable specifications of the front end filters including both the notch filter and the antenna frequency response. A simulation program package was developed to be included in SOLARSIM to perform tradeoffs of system parameters based on minimizing the phase error for the pilot phase extraction. An analytical model that characterizes the overall power transponder operation was developed. From this model, the effects of different phase noise disturbance sources that contribute to phase variations at the output of the power transponders were studied and quantified. Results indicate that it is feasible to hold the antenna array phase error to less than one degree per power module for the type of disturbances modeled
Formulation, Interpretation and Application of non-Commutative Quantum Mechanics
In analogy with conventional quantum mechanics, non-commutative quantum
mechanics is formulated as a quantum system on the Hilbert space of
Hilbert-Schmidt operators acting on non-commutative configuration space. It is
argued that the standard quantum mechanical interpretation based on Positive
Operator Valued Measures, provides a sufficient framework for the consistent
interpretation of this quantum system. The implications of this formalism for
rotational and time reversal symmetry are discussed. The formalism is applied
to the free particle and harmonic oscillator in two dimensions and the physical
signatures of non commutativity are identified.Comment: 11 page
Non-commutative Quantum Mechanics in Three Dimensions and Rotational Symmetry
We generalize the formulation of non-commutative quantum mechanics to three
dimensional non-commutative space. Particular attention is paid to the
identification of the quantum Hilbert space in which the physical states of the
system are to be represented, the construction of the representation of the
rotation group on this space, the deformation of the Leibnitz rule accompanying
this representation and the implied necessity of deforming the co-product to
restore the rotation symmetry automorphism. This also implies the breaking of
rotational invariance on the level of the Schroedinger action and equation as
well as the Hamiltonian, even for rotational invariant potentials. For
rotational invariant potentials the symmetry breaking results purely from the
deformation in the sense that the commutator of the Hamiltonian and angular
momentum is proportional to the deformation.Comment: 21 page
Bound state energies and phase shifts of a non-commutative well
Non-commutative quantum mechanics can be viewed as a quantum system
represented in the space of Hilbert-Schmidt operators acting on non-commutative
configuration space. Within this framework an unambiguous definition can be
given for the non-commutative well. Using this approach we compute the bound
state energies, phase shifts and scattering cross sections of the non-
commutative well. As expected the results are very close to the commutative
results when the well is large or the non-commutative parameter is small.
However, the convergence is not uniform and phase shifts at certain energies
exhibit a much stronger then expected dependence on the non-commutative
parameter even at small values.Comment: 12 pages, 8 figure
Variations on the Planar Landau Problem: Canonical Transformations, A Purely Linear Potential and the Half-Plane
The ordinary Landau problem of a charged particle in a plane subjected to a
perpendicular homogeneous and static magnetic field is reconsidered from
different points of view. The role of phase space canonical transformations and
their relation to a choice of gauge in the solution of the problem is
addressed. The Landau problem is then extended to different contexts, in
particular the singular situation of a purely linear potential term being added
as an interaction, for which a complete purely algebraic solution is presented.
This solution is then exploited to solve this same singular Landau problem in
the half-plane, with as motivation the potential relevance of such a geometry
for quantum Hall measurements in the presence of an electric field or a
gravitational quantum well
On asymptotically flat solutions of Einstein's equations periodic in time I. Vacuum and electrovacuum solutions
By an argument similar to that of Gibbons and Stewart, but in a different
coordinate system and less restrictive gauge, we show that any
weakly-asymptotically-simple, analytic vacuum or electrovacuum solutions of the
Einstein equations which are periodic in time are necessarily stationary.Comment: 25 pages, 2 figures, published in Class. Quant. Grav
Noncommutative quantum mechanics -- a perspective on structure and spatial extent
We explore the notion of spatial extent and structure, already alluded to in
earlier literature, within the formulation of quantum mechanics on the
noncommutative plane. Introducing the notion of average position and its
measurement, we find two equivalent pictures: a constrained local description
in position containing additional degrees of freedom, and an unconstrained
nonlocal description in terms of the position without any other degrees of
freedom. Both these descriptions have a corresponding classical theory which
shows that the concept of extended, structured objects emerges quite naturally
and unavoidably there. It is explicitly demonstrated that the conserved energy
and angular momentum contain corrections to those of a point particle. We argue
that these notions also extend naturally to the quantum level. The local
description is found to be the most convenient as it manifestly displays
additional information about structure of quantum states that is more subtly
encoded in the nonlocal, unconstrained description. Subsequently we use this
picture to discuss the free particle and harmonic oscillator as examples.Comment: 25 pages, no figure
The N=1 Supersymmetric Landau Problem and its Supersymmetric Landau Level Projections: the N=1 Supersymmetric Moyal-Voros Superplane
The N=1 supersymmetric invariant Landau problem is constructed and solved. By
considering Landau level projections remaining non trivial under N=1
supersymmetry transformations, the algebraic structures of the N=1
supersymmetric covariant non(anti)commutative superplane analogue of the
ordinary N=0 noncommutative Moyal-Voros plane are identified
Bosonization in d=2 from finite chiral determinants with a Gauss decomposition
We show how to bosonize two-dimensional non-abelian models using finite
chiral determinants calculated from a Gauss decomposition. The calculation is
quite straightforward and hardly more involved than for the abelian case. In
particular, the counterterm , which is normally motivated from gauge
invariance and then added by hand, appears naturally in this approach.Comment: 4 pages, Revte
- …