90 research outputs found
Oxide nanotemplates for self-assembling "solid" building blocks
It is widely accepted that self-assembling building blocks is one of the
promising ways for engineering new materials. Recent years reveal substantial
progress in fabricating colloidal particles, polymer blocks and supramolecular
aggregates of organic molecules. Despite of substantial progress in molecular
self-assembly there is still a lack of simple blocks made of "solid matter"
(e.g. metals, oxides etc.) with well-defined crystal structure and spatial
order. Here we demonstrate that ordered arrays of metal nanoclusters can be
fabricated by self-assembly on a wide range of oxide templates. These
nano-templates are produced either by depositing an alien oxide film or by
oxidizing a metal/metal oxide substrate.Comment: 11 pages, 2 figures added DFT calculations and Fig.
Lipidomics Analysis Reveals Efficient Storage of Hepatic Triacylglycerides Enriched in Unsaturated Fatty Acids after One Bout of Exercise in Mice
Background: Endurance exercise induces lipolysis, increases circulating concentrations of free fatty acids (FFA) and the uptake and oxidation of fatty acids in the working muscle. Less is known about the regulation of lipid metabolism in the liver during and post-exercise
The self-assembly of metallic nanowires
We have demonstrated that nickel adatoms self-assemble into quasi one-dimensional nanowires on vicinal Rh(111) surfaces by decorating their regular monoatomic step arrays, while V adatoms do not. The step decoration process has been followed experimentally by variable-temperature scanning tunnelling microscopy and high-resolution X-ray photoelectron spectroscopy. The physical origin of the different step-assisted self-assembly behaviour of Ni and V adatoms has been elucidated theoretically and is ascribed to different diffusion barriers and trapping capability of Ni and V at Rh steps. (c) 2006 Elsevier B.V. All rights reserved
Metal supported oxide nanostructures: model systems for advanced catalysis
Metal supported oxide nanostructures are discussed within the framework of the "inverse model catalyst" concept. We show that oxide nanostructures on metal surfaces may be regarded as artificial oxide materials, which display novel properties as compared to bulk oxide compounds and are stabilised by interfacial interactions and two-dimensional confinement effects. This is illustrated for prototypical examples of vanadium oxide overlayers on Rh(111) and Pd(111) surfaces. Structure and morphological changes of the oxide phase on V-oxide/Rh and V-oxide/Pd inverse catalyst surfaces are discussed, and the mass transport problem in catalyst systems during oxidation-reduction cycles is addressed. We demonstrate that the diffusion of oxide cluster over the metal surface provides a effective means of mass transport. The role of metal-oxide interface in determining the oxide nanolayer structure on particular substrate surfaces is investigated, and interfacial chemistry and interfacial strain effects are identified as important parameters
V2O3(0001) surface terminations: from oxygen- to vanadium-rich
Well-ordered epitaxial V2O3(0 0 0 1) films (thickness > 80 Angstrom) have been prepared on the clean Rh(1 1 1) surface and investigated with scanning tunnelling microscopy, low-energy electron diffraction, high-resolution electron energy loss spectroscopy and high-resolution X-ray photoelectron spectroscopy with synchrotron radiation. Atomically flat V2O3(0 0 0 1) surfaces, terminated by vanadyl (V=O) groups, have been obtained after the reactive oxide deposition and subsequent annealing in vacuum to 600 degreesC. Annealing the V=O termination in oxygen atmosphere (500 degreesC, 5 x 10(-6) mbar) results in the partial removal of the vanadyl groups and in the formation of an oxygen-richer surface termination, exhibiting a (root3 x root3)R30degrees structure. Structure models for this oxygen-rich termination are proposed, which are characterised by (O=V)(0.66)-O-3-V-V-. . . and (O=V)(0.33)-O-3-V-V (. . .) stacking sequences. Conversely, deposition of sub-monolayer V coverages onto the V=O surface leads to the formation of a metal-rich V2O3(0 0 0 1) surface, terminated by a close-packed V-3 layer on top of the bulk-type O-3 plane. Such a VO(1 1 1)-layer is only metastable and oxidises back readily upon annealing in vacuum to the vanadyl-terminated V2O3(0 0 0 1) surface. (C) 2004 Elsevier B.V. All rights reserved
Chemical Reactivity of Ni-Rh Nanowires
The properties of bimetallic Ni-Rh nanowires, fabricated by decorating the steps of vicinal Rh(111) surfaces by stripes of self-assembled Ni adatoms, have been probed by STM, photoemission, and ab initio density functional theory calculations. These Ni-Rh nanowires have specific electronic properties that lead to a significantly enhanced chemical reactivity towards oxygen. As a result, the Ni-Rh nanowires can be oxidized exclusively, generating novel quasi-one-dimensional oxide structures
Growth and thermal behaviour of NiO nanolayers on Pd(100)
The growth of ultrathin nickel oxide overlayers (nanolayers) on Pd(100) from submonolayer coverages up to 20
monolayer thick films has been investigated by scanning tunneling microscopy (STM), in conjunction with LEED
and high-resolution electron energy loss spectroscopy (HREELS). The first nickel oxide monolayer on Pd(100) forms
a wetting layer with a c(4 x 2) structure, which has been interpreted in terms of an interface stabilised Ni3O4-type structure.
Stoichiometric NiO grows on top of the c(4x 2) monolayer in a strained lattice with the (100) surface orientation
parallel to the substrate. The lattice relaxation of the NiO phase occurs gradually and is completed after 10 monolayers,
where a bulk-type NiO phase is obtained. The phonon spectra of the c(4 x 2) monolayer and the subsequent
NiO layers, as measured by HREELS, are characteristic and of diagnostic value to identify the different oxide phases.
The morphology of the nickel oxide nanolayers has been analysed by quantitative evaluation of the STM images in
terms of their roughness parameters. The roughness of nickel oxide nanolayers prepared by different kinetic routes
has been compared and the optimal preparation conditions for obtaining smooth morphologies are proposed
- âŠ