522 research outputs found
volumetric characterisation and correlation to established classification systems
Objective and sensitive assessment of cartilage repair outcomes lacks suitable
methods. This study investigated the feasibility of 3D ultrasound
biomicroscopy (UBM) to quantify cartilage repair outcomes volumetrically and
their correlation with established classification systems. 32 sheep underwent
bilateral treatment of a focal cartilage defect. One or two years post-
operatively the repair outcomes were assessed and scored macroscopically
(Outerbridge, ICRS-CRA), by magnetic resonance imaging (MRI, MOCART), and
histopathology (O'Driscoll, ICRS-I and ICRS-II). The UBM data were acquired
after MRI and used to reconstruct the shape of the initial cartilage layer,
enabling the estimation of the initial cartilage thickness and defect volume
as well as volumetric parameters for defect filling, repair tissue, bone loss
and bone overgrowth. The quantification of the repair outcomes revealed high
variations in the initial thickness of the cartilage layer, indicating the
need for cartilage thickness estimation before creating a defect. Furthermore,
highly significant correlations were found for the defect filling estimated
from UBM to the established classification systems. 3D visualisation of the
repair regions showed highly variable morphology within single samples. This
raises the question as to whether macroscopic, MRI and histopathological
scoring provide sufficient reliability. The biases of the individual methods
will be discussed within this context. UBM was shown to be a feasible tool to
evaluate cartilage repair outcomes, whereby the most important objective
parameter is the defect filling. Translation of UBM into arthroscopic or
transcutaneous ultrasound examinations would allow non-destructive and
objective follow-up of individual patients and better comparison between the
results of clinical trials
The AGeS2 (Awards for Geochronology Student research 2) Program: Supporting Community Geochronology Needs and Interdisciplinary Science
Geochronology is essential in the geosciences. It is used to resolve the durations and rates of earth processes, as well as test causative relationships among events. Such data are increasingly required to conduct cutting-edge, transformative, earth-science research. The growing need for geochronology is accompanied by strong demand to enhance the ability of labs to meet this pressure and to increase community awareness of how these data are produced and interpreted. For example, a 2015 National Science Foundation (NSF) report on opportunities and challenges for U.S. geochronology research noted: While there has never been a time when users have had greater access to geo-chronologic data, they remain, by and large, dissatisfied with the available style/ quantity/cost/efficiency (Harrison et al., 2015, p. 1). And the 2012 National Research Council NROES (New Research Opportunities in the Earth Sciences) report (Lay et al., 2012, p. 82) recommended: [NSF] EAR should explore new mechanisms for geochronology laboratories that will service the geochronology requirements of the broad suite of research opportunities while sustaining technical advances in methodologies. The AGeS (Awards for Geochronology Student research) program is one way that these calls are being answered
A Bespoke Kinect Stepping Exergame for Improving Physical and Cognitive Function in Older People: A Pilot Study
Background: Systematic review evidence has shown that step training reduces the number of falls in older people by half. This study investigated the feasibility and effectiveness of a bespoke Kinect stepping exergame in an unsupervised home-based setting.
Materials and methods: An uncontrolled pilot trial was conducted in 12 community-dwelling older adults (mean age 79.3 ± 8.7 years, 10 females). The stepping game comprised rapid stepping, attention, and response inhibition. Participants were recommended to exercise unsupervised at home for a minimum of three 20-minute sessions per week over the 12-week study period. The outcome measures were choice stepping reaction time (CSRT) (main outcome measure), standing balance, gait speed, five-time sit-to-stand (STS), timed up and go (TUG) performance, and neuropsychological function (attention: letter-digit and executive function:Stroop tests) assessed at baseline, 4 weeks, 8 weeks, and trial end (12 weeks).
Results: Ten participants (83%) completed the trial and reassessments. A median 8.2 20-minute sessions were completed and no adverse events were reported. Across the trial period, participants showed significant improvements in CSRT (11%), TUG (13%), gait speed (29%), standing balance (7%), and STS (24%) performance (all P < 0.05). There were also nonsignificant, but meaningful, improvements for the letter-digit (13%) and Stroop tests (15%).
Conclusions: This study found that a bespoke Kinect step training program was safe and feasible for older people to undertake unsupervised at home and led to improvements in stepping, standing balance, gait speed, and mobility. The home-based step training program could therefore be included in exercise programs designed to prevent falls
Recommended from our members
Dislocation imaging of an InAlGaAs opto-electronic modulator using IBICC
This paper presents ion beam induced charge collection (IBICC) contrast images showing regions of differing charge collection efficiency within optoelectronic modulator devices. The experiments were carried out at the Sandia nuclear microprobe using 18 MeV carbon and 2 MeV helium ions. Lines of varying densities are observed to run along the different {l_brace}110{r_brace} directions which correlate with misfit dislocations within the 392nm thick strained layer superlattice quantum well of the modulator structure. Independent cross-sectional TEM studies and the electrical properties of the devices under investigation suggest the presence of threading dislocations in the active device region at a density of {approximately} 10{sup 6} cm{sup {minus}2}. However, no clear evidence of threading dislocations was observed in the IBICC images as they are possibly masked by the strong contrast of the misfit dislocations. Charge carrier transport within the modulator is used to explain the observed contrast. The different signal to noise levels and rates of damage of the incident ions are assessed
Experimental Realization of an Optical One-Way Barrier for Neutral Atoms
We demonstrate an asymmetric optical potential barrier for ultracold 87 Rb
atoms using laser light tuned near the D_2 optical transition. Such a one-way
barrier, where atoms impinging on one side are transmitted but reflected from
the other, is a realization of Maxwell's demon and has important implications
for cooling atoms and molecules not amenable to standard laser-cooling
techniques. In our experiment, atoms are confined to a far-detuned dipole trap
consisting of a single focused Gaussian beam, which is divided near the focus
by the barrier. The one-way barrier consists of two focused laser beams
oriented almost normal to the dipole-trap axis. The first beam is tuned to have
a red (blue) detuning from the F=1 -> F' (F=2 -> F') hyperfine transitions, and
thus presents a barrier only for atoms in the F=2 ground state, while letting
F=1 atoms pass. The second beam pumps the atoms to F=2 on the reflecting side
of the barrier, thus producing the asymmetry.Comment: 5 pages, 4 figures; includes changes to address referee comment
Isotopic composition (238U/235U) of some commonly used uranium reference materials
We have determined 238U/235U ratios for a suite of commonly used natural (CRM 112a, SRM 950a, and HU-1) and synthetic (IRMM 184 and CRM U500) uranium reference materials by thermal ionisation mass-spectrometry (TIMS) using the IRMM 3636 233U-236U double spike to accurately correct for mass fractionation. Total uncertainty on the 238U/235U determinations is estimated to be < 0.02% (2σ). These natural 238U/235U values are different from the widely used ‘consensus’ value (137.88), with each standard having lower 238U/235U values by up to 0.08%. The 238U/235U ratio determined for CRM U500 and IRMM 184 are within error of their certified values; however, the total uncertainty for CRM U500 is substantially reduced (from 0.1% to 0.02%). These reference materials are commonly used to assess mass spectrometer performance and accuracy, calibrate isotope tracers employed in U, U-Th and U-Pb isotopic studies, and as a reference for terrestrial and meteoritic 238U/235U variations. These new 238U/235U values will thus provide greater accuracy and reduced uncertainty for a wide variety of isotopic determinations
Chemical abrasion: the mechanics of zircon dissolution
Chemical abrasion is a technique that combines thermal annealing and partial
dissolution in hydrofluoric acid (HF) to selectively remove
radiation-damaged portions of zircon crystals prior to U–Pb isotopic
analysis, and it is applied ubiquitously to zircon prior to U–Pb isotope
dilution thermal ionization mass spectrometry (ID-TIMS). The mechanics of
zircon dissolution in HF and the impact of different leaching conditions on
the zircon structure, however, are poorly resolved. We present a
microstructural investigation that integrates microscale X-ray computed
tomography (µCT), scanning electron microscopy, and Raman
spectroscopy to evaluate zircon dissolution in HF. We show that µCT
is an effective tool for imaging metamictization and complex dissolution
networks in three dimensions. Acid frequently reaches crystal interiors via
fractures spatially associated with radiation damage zoning and inclusions
to dissolve soluble high-U zones, some inclusions, and material around
fractures, leaving behind a more crystalline zircon residue. Other acid paths
to crystal cores include the dissolution of surface-reaching inclusions and
the percolation of acid across zones with high defect densities. In highly
crystalline samples dissolution is crystallographically controlled with
dissolution proceeding almost exclusively along the c axis. Increasing the
leaching temperature from 180 to 210 ∘C results in
deeper etching textures, wider acid paths, more complex internal dissolution
networks, and greater volume losses. How a grain dissolves strongly depends
on its initial radiation damage content and defect distribution as well as
the size and position of inclusions. As such, the effectiveness of any
chemical abrasion protocol for ID-TIMS U–Pb geochronology is likely
sample-dependent. We also briefly discuss the implications of our findings
for deep-time (U-Th)/He thermochronology.</p
Maximal exercise at extreme altitudes on Mount Everest
Maximal exercise at extreme altitudes was studied during the course of the American Medical Research Expedition to Everest. Measurements were carried out at sea level [inspired O2 partial pressure (PO2) 147 Torr], 6,300 m during air breathing (inspired PO2 64 Torr), 6,300 m during 16% O2 breathing (inspired PO2 49 Torr), and 6,300 m during 14% O2 breathing (inspired PO2 43 Torr). The last PO2 is equivalent to that on the summit of Mt. Everest. All the 6,300 m studies were carried out in a warm well-equipped laboratory on well-acclimatized subjects. Maximal O2 uptake fell dramatically as the inspired PO2 was reduced to very low levels. However, two subjects were able to reach an O2 uptake of 1 l/min at the lowest inspired PO2. Arterial O2 saturations fell markedly and alveolar-arterial PO2 differences increased as the work rate was raised at high altitude, indicating diffusion limitation of O2 transfer. Maximal exercise ventilations exceed 200 l/min at 6,300 m during air breathing but fell considerably at the lowest values of inspired PO2. Alveolar CO2 partial pressure was reduced to 7-8 Torr in one subject at the lowest inspired PO2, and the same value was obtained from alveolar gas samples taken by him at rest on the summit. The results help to explain how man can reach the highest point on earth while breathing ambient air
Electronic Structure Calculation by First Principles for Strongly Correlated Electron Systems
Recent trends of ab initio studies and progress in methodologies for
electronic structure calculations of strongly correlated electron systems are
discussed. The interest for developing efficient methods is motivated by recent
discoveries and characterizations of strongly correlated electron materials and
by requirements for understanding mechanisms of intriguing phenomena beyond a
single-particle picture. A three-stage scheme is developed as renormalized
multi-scale solvers (RMS) utilizing the hierarchical electronic structure in
the energy space. It provides us with an ab initio downfolding of the global
band structure into low-energy effective models followed by low-energy solvers
for the models. The RMS method is illustrated with examples of several
materials. In particular, we overview cases such as dynamics of semiconductors,
transition metals and its compounds including iron-based superconductors and
perovskite oxides, as well as organic conductors of kappa-ET type.Comment: 44 pages including 38 figures, to appear in J. Phys. Soc. Jpn. as an
invited review pape
- …