27 research outputs found
The Physics of Star Cluster Formation and Evolution
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe
Continuous monitoring of snowpack dynamics in alpine terrain by aboveground neutron sensing
The characteristics of an aboveground cosmic-ray neutron sensor (CRNS) are evaluated for monitoring a mountain snowpack in the Austrian Alps from March 2014 to June 2016. Neutron counts were compared to continuous point-scale snow depth (SD) and snow-water-equivalent (SWE) measurements from an automatic weather station with a maximum SWE of 600 mm (April 2014). Several spatially distributed Terrestrial Laser Scanning (TLS)-based SD and SWE maps were additionally used. A strong nonlinear correlation is found for both SD and SWE. The representative footprint of the CRNS is in the range of 230\u2013270 m. In contrast to previous studies suggesting signal saturation at around 100 mm of SWE, no complete signal saturation was observed. These results imply that CRNS could be transferred into an unprecedented method for continuous detection of spatially averaged SD and SWE for alpine snowpacks, though with sensitivity decreasing with increasing SWE. While initially different functions were found for accumulation and melting season conditions, this could be resolved by accounting for a limited measurement depth. This depth limit is in the range of 200 mm of SWE for dense snowpacks with high liquid water contents and associated snow density values around 450 kg m 123 and above. In contrast to prior studies with shallow snowpacks, interannual transferability of the results is very high regardless of presnowfall soil moisture conditions. This underlines the unexpectedly high potential of CRNS to close the gap between point-scale measurements, hydrological models, and remote sensing of the cryosphere in alpine terrain
Etomidate versus Ketamine as Prehospital Induction Agent in Patients with Suspected Severe Traumatic Brain Injury
Background: Severe traumatic brain injury is a leading cause of morbidity and mortality among young people around the world. Prehospital care focuses on the prevention and treatment of secondary brain injury and commonly includes tracheal intubation after induction of general anesthesia. The choice of induction agent in this setting is controversial. This study therefore investigated the association between the chosen induction medication etomidate versus S(+)-ketamine and the 30-day mortality in patients with severe traumatic brain injury who received prehospital airway management in the Netherlands. Methods: This study is a retrospective analysis of the prospectively collected observational data of the Brain Injury: Prehospital Registry of Outcomes, Treatments and Epidemiology of Cerebral Trauma (BRAIN-PROTECT) cohort study. Patients with suspected severe traumatic brain injury who were transported to a participating trauma center and who received etomidate or S(+)-ketamine for prehospital induction of anesthesia for advanced airway management were included. Statistical analyses were performed with multivariable logistic regression and inverse probability of treatment weighting analysis. results: In total, 1,457 patients were eligible for analysis. No significant association between the administered induction medication and 30-day mortality was observed in unadjusted analyses (32.9% mortality for etomidate versus 33.8% mortality for S(+)-ketamine; P = 0.716; odds ratio, 1.04; 95% CI, 0.83 to 1.32; P = 0.711), as well as after adjustment for potential confounders (odds ratio, 1.08; 95% CI, 0.67 to 1.73; P = 0.765; and risk difference 0.017; 95% CI, â0.051 to 0.084; P = 0.686). Likewise, in planned subgroup analyses for patients with confirmed traumatic brain injury and patients with isolated traumatic brain injury, no significant differences were found. Consistent results were found after multiple imputations of missing data. Conclusions: The analysis found no evidence for an association between the use of etomidate or S(+)-ketamine as an anesthetic agent for intubation in patients with traumatic brain injury and mortality after 30 days in the prehospital setting, suggesting that the choice of induction agent may not influence the patient mortality rate in this population.</p
Effect of Daytime versus Nighttime on Prehospital Care and Outcomes after Severe Traumatic Brain Injury
Background/Objectives: Severe traumatic brain injury (TBI) is a frequent cause of morbidity and mortality worldwide. In the Netherlands, suspected TBI is a criterion for the dispatch of the physician-staffed helicopter emergency medical services (HEMS) which are operational 24 h per day. It is unknown if patient outcome is influenced by the time of day during which the incident occurs. Therefore, we investigated the association between the time of day of the prehospital treatment of severe TBI and 30-day mortality. Methods: A retrospective analysis of prospectively collected data from the BRAIN-PROTECT study was performed. Patients with severe TBI treated by one of the four Dutch helicopter emergency medical services were included and followed up to one year. The association between prehospital treatment during day- versus nighttime, according to the universal daylight period, and 30-day mortality was analyzed with multivariable logistic regression. A planned subgroup analysis was performed in patients with TBI with or without any other injury. Results: A total of 1794 patients were included in the analysis, of which 1142 (63.7%) were categorized as daytime and 652 (36.3%) as nighttime. Univariable analysis showed a lower 30-day mortality in patients with severe TBI treated during nighttime (OR 0.74, 95% CI 0.60â0.91, p = 0.004); this association was no longer present in the multivariable model (OR 0.82, 95% CI 0.59â1.16, p = 0.262). In a subgroup analysis, no association was found between mortality rates and the time of prehospital treatment in patients with combined injuries (TBI and any other injury). Patients with isolated TBI had a lower mortality rate when treated during nighttime than when treated during daytime (OR 0.51, 95% CI 0.34â0.76, p = 0.001). Within the whole cohort, daytime versus nighttime treatments were not associated with differences in functional outcome defined by the Glasgow Outcome Scale. Conclusions: In the overall study population, no difference was found in 30-day mortality between patients with severe TBI treated during day or night in the multivariable model. Patients with isolated severe TBI had lower mortality rates at 30 days when treated at nighttime.</p