815 research outputs found
Laminar and turbulent dynamos in chiral magnetohydrodynamics-I: Theory
The magnetohydrodynamic (MHD) description of plasmas with relativistic
particles necessarily includes an additional new field, the chiral chemical
potential associated with the axial charge (i.e., the number difference between
right- and left-handed relativistic fermions). This chiral chemical potential
gives rise to a contribution to the electric current density of the plasma
(\emph{chiral magnetic effect}). We present a self-consistent treatment of the
\emph{chiral MHD equations}, which include the back-reaction of the magnetic
field on a chiral chemical potential and its interaction with the plasma
velocity field. A number of novel phenomena are exhibited. First, we show that
the chiral magnetic effect decreases the frequency of the Alfv\'{e}n wave for
incompressible flows, increases the frequencies of the Alfv\'{e}n wave and of
the fast magnetosonic wave for compressible flows, and decreases the frequency
of the slow magnetosonic wave. Second, we show that, in addition to the
well-known laminar chiral dynamo effect, which is not related to fluid motions,
there is a dynamo caused by the joint action of velocity shear and chiral
magnetic effect. In the presence of turbulence with vanishing mean kinetic
helicity, the derived mean-field chiral MHD equations describe turbulent
large-scale dynamos caused by the chiral alpha effect, which is dominant for
large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an
interaction of the chiral magnetic effect and fluctuations of the small-scale
current produced by tangling magnetic fluctuations (which are generated by
tangling of the large-scale magnetic field by sheared velocity fluctuations).
These dynamo effects may have interesting consequences in the dynamics of the
early universe, neutron stars, and the quark--gluon plasma.Comment: 23 pages, 4 figure
Harmonic behavior of metallic glasses up to the metastable melt
In two amorphous alloys ZrTiCuNiBe and ZrAlNiCu coherent neutron scattering has been measured over five decades in energy, including measurements in the metastable melt of a metallic alloy more than 80 K above Tg. In the vibrational spectra a pronounced "boson" peak is found: Even in crystallized samples the density of states exceeds the Debye ω2 model, and in the amorphous state low-frequency vibrations are further enhanced. The peak position shows no dispersion in q, while intensities are strongly correlated with the static structure factor. Over the full energy range the temperature dependence is strictly harmonic. From high-energy resolution measurements we establish lower bounds for the temperatures at which structural α and fast β relaxation become observable
Ice XII in its second regime of metastability
We present neutron powder diffraction results which give unambiguous evidence
for the formation of the recently identified new crystalline ice phase[Lobban
et al.,Nature, 391, 268, (1998)], labeled ice XII, at completely different
conditions. Ice XII is produced here by compressing hexagonal ice I_h at T =
77, 100, 140 and 160 K up to 1.8 GPa. It can be maintained at ambient pressure
in the temperature range 1.5 < T < 135 K. High resolution diffraction is
carried out at T = 1.5 K and ambient pressure on ice XII and accurate
structural properties are obtained from Rietveld refinement. At T = 140 and 160
K additionally ice III/IX is formed. The increasing amount of ice III/IX with
increasing temperature gives an upper limit of T ~ 150 K for the successful
formation of ice XII with the presented procedure.Comment: 3 Pages of RevTeX, 3 tables, 3 figures (submitted to Physical Review
Letters
Systematic evaluation of 99mTc-tetrofosmin versus 99mTc-sestamibi to study murine myocardial perfusion in small animal SPECT/CT
Background: The “back-translation” of clinically available protocols to measure myocardial perfusion to preclinical imaging in mouse models of human disease is attractive for basic biomedical research. With respect to singlephoton emission computed tomography (SPECT) approaches, clinical myocardial perfusion imaging protocols are established with different 99mTc-labeled perfusion tracers; however, studies evaluating and optimizing protocols for these tracers in high-resolution pinhole SPECT in mice are lacking. This study aims at evaluating two clinically available 99mTc-labeled myocardial perfusion tracers (99mTc-sestamibi vs. 99mTc-Tetrofosmin) in mice using four different imaging protocols.
Methods: Adult C57BL/6 male mice were injected with 99mTc-sestamibi (MIBI) or 99mTc-Tetrofosmin (TETRO) (4 MBq/g body weight) either intravenously through the tail vein (n = 5) or retroorbitally (n = 5) or intraperitoneally (i. p.) under anesthesia (n = 3) or i.p. in an awake state (n = 3) at rest. Immediately after injection, a multi-frame singlephoton emission computed tomography/computed tomography (SPECT/CT) acquisition was initiated with six subsequent time frames of 10 min each. Reconstructed images of the different protocols were assessed and compared by visual analysis by experts and by time-activity-curves generated from regions-of-interest for various organs (normalized uptake values).
Results: Visually assessing overall image quality, the best image quality was found for MIBI for both intravenous injection protocols, whereas TETRO only had comparable image quality after retroorbital injections. These results were confirmed by quantitative analysis where left ventricular (LV) uptake of MIBI after tail vein injections was found significantly higher for all time points accompanied with a significantly slower washout of 16% for MIBI vs. 33% for TETRO (p = 0.009) from 10 to 60 min post injection (PI). Interestingly, LV washout from 10 to 60 min PI was significantly higher for TETRO when applied by tail vein injections when compared to retroorbital injections (22%, p = 0.008). However, liver uptake was significant and comparable for both tracers at all time points. Radioactivity concentration in the lungs was negligible for all time points and both tracers.
Conclusion: Intravenous MIBI injection (both tail vein and retroorbital) results in the best image quality for assessing myocardial perfusion of the murine heart by SPECT/CT. TETRO has a comparable image quality only for the retroorbital injection route
Crystal-like high frequency phonons in the amorphous phases of solid water
The high frequency dynamics of low- (LDA) and high-density amorphous-ice
(HDA) and of cubic ice (I_c) has been measured by inelastic X-ray Scattering
(IXS) in the 1-15 nm^{-1} momentum transfer (Q) range. Sharp phonon-like
excitations are observed, and the longitudinal acoustic branch is identified up
to Q = 8nm^{-1} in LDA and I_c and up to 5nm^{-1} in HDA. The narrow width of
these excitations is in sharp contrast with the broad features observed in all
amorphous systems studied so far. The "crystal-like" behavior of amorphous
ices, therefore, implies a considerable reduction in the number of decay
channels available to sound-like excitations which is assimilated to low local
disorder.Comment: 4 pages, 3 figure
Sparse random matrices and vibrational spectra of amorphous solids
A random matrix approach is used to analyze the vibrational properties of
amorphous solids. We investigated a dynamical matrix M=AA^T with non-negative
eigenvalues. The matrix A is an arbitrary real NxN sparse random matrix with n
independent non-zero elements in each row. The average values =0 and
dispersion =V^2 for all non-zero elements. The density of vibrational
states g(w) of the matrix M for N,n >> 1 is given by the Wigner quarter circle
law with radius independent of N. We argue that for n^2 << N this model can be
used to describe the interaction of atoms in amorphous solids. The level
statistics of matrix M is well described by the Wigner surmise and corresponds
to repulsion of eigenfrequencies. The participation ratio for the major part of
vibrational modes in three dimensional system is about 0.2 - 0.3 and
independent of N. Together with term repulsion it indicates clearly to the
delocalization of vibrational excitations. We show that these vibrations spread
in space by means of diffusion. In this respect they are similar to diffusons
introduced by Allen, Feldman, et al., Phil. Mag. B 79, 1715 (1999) in amorphous
silicon. Our results are in a qualitative and sometimes in a quantitative
agreement with molecular dynamic simulations of real and model glasses.Comment: 24 pages, 7 figure
Intraoperative 3-D mapping of parathyroid adenoma using freehand SPECT
Background: Freehand single photon emission computed tomography (fSPECT) is a three-dimensional (3-D) tomographic imaging modality based on data acquisition with a handheld detector that is moved freely, in contrast to conventional, gantry-mounted gamma camera systems. In this pilot study, we evaluated the feasibility of fSPECT for intraoperative 3-D mapping in patients with parathyroid adenomas.
Methods: Three patients (range 30 to 45 years) diagnosed with hyperparathyroidism (one primary and two tertiary) underwent parathyroid scintigraphy with technetium-99m sestamibi (99mTc-MIBI) to localize parathyroid adenomas. Two patients were referred with persistent hyperparathyroidism after conventional parathyroidectomy. In all three patients, a planar scintigraphy of the neck was performed 10 min after injection (p.i.) followed by SPECT/CT (Symbia T2, Siemens Healthcare) and a correlative ultrasound 2 h p.i. 99mTc-MIBI scan was performed the day before surgery in two patients and at the same day in one patient. fSPECT images were acquired intraoperatively using declipse SPECT (SurgicEyeTM).
Results: A total of five parathyroid adenomas were successfully located with SPECT/CT. fSPECT allowed intraoperative detection of all adenomas, and successful parathyroidectomy was accomplished. Parathyroid hormone level decreased intraoperatively in all three patients, on average, by 79% (range 72% to 91%).
Conclusion: In this preliminary study, we could demonstrate that intraoperative localization of parathyroid adenomas is feasible using the freehand SPECT technology, thus allowing an image-guided parathyroidectomy
The turbulent chiral magnetic cascade in the early universe
Theoretical Physic
Numerical study of anharmonic vibrational decay in amorphous and paracrystalline silicon
The anharmonic decay rates of atomic vibrations in amorphous silicon (a-Si)
and paracrystalline silicon (p-Si), containing small crystalline grains
embedded in a disordered matrix, are calculated using realistic structural
models. The models are 1000-atom four-coordinated networks relaxed to a local
minimum of the Stillinger-Weber interatomic potential. The vibrational decay
rates are calculated numerically by perturbation theory, taking into account
cubic anharmonicity as the perturbation. The vibrational lifetimes for a-Si are
found to be on picosecond time scales, in agreement with the previous
perturbative and classical molecular dynamics calculations on a 216-atom model.
The calculated decay rates for p-Si are similar to those of a-Si. No modes in
p-Si reside entirely on the crystalline cluster, decoupled from the amorphous
matrix. The localized modes with the largest (up to 59%) weight on the cluster
decay primarily to two diffusons. The numerical results are discussed in
relation to a recent suggestion by van der Voort et al. [Phys. Rev. B {\bf 62},
8072 (2000)] that long vibrational relaxation inferred experimentally may be
due to possible crystalline nanostructures in some types of a-Si.Comment: 9 two-column pages, 13 figure
- …