15 research outputs found

    Pathogenic Polyglutamine Tracts Are Potent Inducers of Spontaneous Sup35 and Rnq1 Amyloidogenesis

    Get PDF
    © 2010 Goehler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedDOI:10.1371/journal.pone.0009642The glutamine/asparagine (Q/N)-rich yeast prion protein Sup35 has a low intrinsic propensity to spontaneously self-assemble into ordered, β-sheet-rich amyloid fibrils. In yeast cells, de novo formation of Sup35 aggregates is greatly facilitated by high protein concentrations and the presence of preformed Q/N-rich protein aggregates that template Sup35 polymerization. Here, we have investigated whether aggregation-promoting polyglutamine (polyQ) tracts can stimulate the de novo formation of ordered Sup35 protein aggregates in the absence of Q/N-rich yeast prions. Fusion proteins with polyQ tracts of different lengths were produced and their ability to spontaneously self-assemble into amlyloid structures was analyzed using in vitro and in vivo model systems. We found that Sup35 fusions with pathogenic (≥54 glutamines), as opposed to non-pathogenic (19 glutamines) polyQ tracts efficiently form seeding-competent protein aggregates. Strikingly, polyQ-mediated de novo assembly of Sup35 protein aggregates in yeast cells was independent of pre-existing Q/N-rich protein aggregates. This indicates that increasing the content of aggregation-promoting sequences enhances the tendency of Sup35 to spontaneously self-assemble into insoluble protein aggregates. A similar result was obtained when pathogenic polyQ tracts were linked to the yeast prion protein Rnq1, demonstrating that polyQ sequences are generic inducers of amyloidogenesis. In conclusion, long polyQ sequences are powerful molecular tools that allow the efficient production of seeding-competent amyloid structures

    Systematic interaction network filtering identifies CRMP1 as a novel suppressor of huntingtin misfolding and neurotoxicity

    Get PDF
    Assemblies of huntingtin (HTT) fragments with expanded polyglutamine (polyQ) tracts are a pathological hallmark of Huntington's disease (HD). The molecular mechanisms by which these structures are formed and cause neuronal dysfunction and toxicity are poorly understood. Here, we utilized available gene expression data sets of selected brain regions of HD patients and controls for systematic interaction network filtering in order to predict disease-relevant, brain region-specific HTT interaction partners. Starting from a large protein-protein interaction (PPI) data set, a step-by-step computational filtering strategy facilitated the generation of a focused PPI network that directly or indirectly connects 13 proteins potentially dysregulated in HD with the disease protein HTT. This network enabled the discovery of the neuron-specific protein CRMP1 that targets aggregation-prone, N-terminal HTT fragments and suppresses their spontaneous self-assembly into proteotoxic structures in various models of HD. Experimental validation indicates that our network filtering procedure provides a simple but powerful strategy to identify disease-relevant proteins that influence misfolding and aggregation of polyQ disease proteins.DFG [SFB740, 740/2-11, SFB618, 618/3-09, SFB/TRR43 A7]; BMBF(NGFN-Plus) [01GS08169-73, 01GS08150, 01GS08108]; HDSA Coalition for the Cure; EU (EuroSpin) [Health-F2-2009-241498, HEALTH-F2-2009-242167]; Helmholtz Association (MSBN, HelMA) [HA-215]; FCT [IF/00881/2013]info:eu-repo/semantics/publishedVersio

    UniHI 4: new tools for query, analysis and visualization of the human protein–protein interactome

    Get PDF
    Human protein interaction maps have become important tools of biomedical research for the elucidation of molecular mechanisms and the identification of new modulators of disease processes. The Unified Human Interactome database (UniHI, http://www.unihi.org) provides researchers with a comprehensive platform to query and access human protein–protein interaction (PPI) data. Since its first release, UniHI has considerably increased in size. The latest update of UniHI includes over 250 000 interactions between ∼22 300 unique proteins collected from 14 major PPI sources. However, this wealth of data also poses new challenges for researchers due to the complexity of interaction networks retrieved from the database. We therefore developed several new tools to query, analyze and visualize human PPI networks. Most importantly, UniHI allows now the construction of tissue-specific interaction networks and focused querying of canonical pathways. This will enable researchers to target their analysis and to prioritize candidate proteins for follow-up studies

    A proteomics analysis of 5xFAD mouse brain regions reveals the lysosome-associated protein Arl8b as a candidate biomarker for Alzheimer's disease

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is characterized by the intra- and extracellular accumulation of amyloid-β (Aβ) peptides. How Aβ aggregates perturb the proteome in brains of patients and AD transgenic mouse models, remains largely unclear. State-of-the-art mass spectrometry (MS) methods can comprehensively detect proteomic alterations, providing relevant insights unobtainable with transcriptomics investigations. Analyses of the relationship between progressive Aβ aggregation and protein abundance changes in brains of 5xFAD transgenic mice have not been reported previously. METHODS: We quantified progressive Aβ aggregation in hippocampus and cortex of 5xFAD mice and controls with immunohistochemistry and membrane filter assays. Protein changes in different mouse tissues were analyzed by MS-based proteomics using label-free quantification; resulting MS data were processed using an established pipeline. Results were contrasted with existing proteomic data sets from postmortem AD patient brains. Finally, abundance changes in the candidate marker Arl8b were validated in cerebrospinal fluid (CSF) from AD patients and controls using ELISAs. RESULTS: Experiments revealed faster accumulation of Aβ42 peptides in hippocampus than in cortex of 5xFAD mice, with more protein abundance changes in hippocampus, indicating that Aβ42 aggregate deposition is associated with brain region-specific proteome perturbations. Generating time-resolved data sets, we defined Aβ aggregate-correlated and anticorrelated proteome changes, a fraction of which was conserved in postmortem AD patient brain tissue, suggesting that proteome changes in 5xFAD mice mimic disease-relevant changes in human AD. We detected a positive correlation between Aβ42 aggregate deposition in the hippocampus of 5xFAD mice and the abundance of the lysosome-associated small GTPase Arl8b, which accumulated together with axonal lysosomal membranes in close proximity of extracellular Aβ plaques in 5xFAD brains. Abnormal aggregation of Arl8b was observed in human AD brain tissue. Arl8b protein levels were significantly increased in CSF of AD patients. CONCLUSIONS: We report a comprehensive biochemical and proteomic investigation of hippocampal and cortical brain tissue derived from 5xFAD transgenic mice, providing a valuable resource to the neuroscientific community. We identified Arl8b, with significant abundance changes in 5xFAD and AD patient brains. Arl8b might enable the measurement of progressive lysosome accumulation in AD patients and have clinical utility as a candidate biomarker

    The Anti-amyloid Compound DO1 Decreases Plaque Pathology and Neuroinflammation-Related Expression Changes in 5xFAD Transgenic Mice

    Full text link
    Self-propagating amyloid-β (Aβ) aggregates or seeds possibly drive pathogenesis of Alzheimer's disease (AD). Small molecules targeting such structures might act therapeutically in vivo. Here, a fluorescence polarization assay was established that enables the detection of compound effects on both seeded and spontaneous Aβ42 aggregation. In a focused screen of anti-amyloid compounds, we identified Disperse Orange 1 (DO1) ([4-((4-nitrophenyl)diazenyl)-N-phenylaniline]), a small molecule that potently delays both seeded and non-seeded Aβ42 polymerization at substoichiometric concentrations. Mechanistic studies revealed that DO1 disrupts preformed fibrillar assemblies of synthetic Aβ42 peptides and decreases the seeding activity of Aβ aggregates from brain extracts of AD transgenic mice. DO1 also reduced the size and abundance of diffuse Aβ plaques and decreased neuroinflammation-related gene expression changes in brains of 5xFAD transgenic mice. Finally, improved nesting behavior was observed upon treatment with the compound. Together, our evidence supports targeting of self-propagating Aβ structures with small molecules as a valid therapeutic strategy

    Interactome Mapping Provides a Network of Neurodegenerative Disease Proteins and Uncovers Widespread Protein Aggregation in Affected Brains.

    Get PDF
    Interactome maps are valuable resources to elucidate protein function and disease mechanisms. Here, we report on an interactome map that focuses on neurodegenerative disease (ND), connects ∼5,000 human proteins via ∼30,000 candidate interactions and is generated by systematic yeast two-hybrid interaction screening of ∼500 ND-related proteins and integration of literature interactions. This network reveals interconnectivity across diseases and links many known ND-causing proteins, such as α-synuclein, TDP-43, and ATXN1, to a host of proteins previously unrelated to NDs. It facilitates the identification of interacting proteins that significantly influence mutant TDP-43 and HTT toxicity in transgenic flies, as well as of ARF-GEP(100) that controls misfolding and aggregation of multiple ND-causing proteins in experimental model systems. Furthermore, it enables the prediction of ND-specific subnetworks and the identification of proteins, such as ATXN1 and MKL1, that are abnormally aggregated in postmortem brains of Alzheimer's disease patients, suggesting widespread protein aggregation in NDs

    mHTT Seeding Activity:A Marker of Disease Progression and Neurotoxicity in Models of Huntington's Disease

    Get PDF
    Self-propagating, amyloidogenic mutant huntingtin (mHTT) aggregates may drive progression of Huntington's disease (HD). Here, we report the development of a FRET-based mHTT aggregate seeding (FRASE) assay that enables the quantification of mHTT seeding activity (HSA) in complex biosamples from HD patients and disease models. Application of the FRASE assay revealed HSA in brain homogenates of presymptomatic HD transgenic and knockin mice and its progressive increase with phenotypic changes, suggesting that HSA quantitatively tracks disease progression. Biochemical investigations of mouse brain homogenates demonstrated that small, rather than large, mHTT structures are responsible for the HSA measured in FRASE assays. Finally, we assessed the neurotoxicity of mHTT seeds in an inducible Drosophila model transgenic for HTTex1. We found a strong correlation between the HSA measured in adult neurons and the increased mortality of transgenic HD flies, indicating that FRASE assays detect disease-relevant, neurotoxic, mHTT structures with severe phenotypic consequences in vivo. Ast et al. present the development of a FRET-based aggregate seeding (FRASE) assay that facilitates the detection and quantification of mHTT seeding activity (HSA) in complex biosamples. They show that HSA is detectable in brains of presymptomatic Huntington's disease (HD) mice and correlates with disease progression and neurotoxicity in HD transgenic flies
    corecore