79 research outputs found

    Wannier-function description of the electronic polarization and infrared absorption of high-pressure hydrogen

    Full text link
    We have constructed maximally-localized Wannier functions for prototype structures of solid molecular hydrogen under pressure, starting from LDA and tight-binding Bloch wave functions. Each occupied Wannier function can be associated with two paired protons, defining a ``Wannier molecule''. The sum of the dipole moments of these ``molecules'' always gives the correct macroscopic polarization, even under strong compression, when the overlap between nearby Wannier functions becomes significant. We find that at megabar pressures the contributions to the dipoles arising from the overlapping tails of the Wannier functions is very large. The strong vibron infrared absorption experimentally observed in phase III, above ~ 150 GPa, is analyzed in terms of the vibron-induced fluctuations of the Wannier dipoles. We decompose these fluctuations into ``static'' and ``dynamical'' contributions, and find that at such high densities the latter term, which increases much more steeply with pressure, is dominant.Comment: 17 pages, two-column style with 14 postscript figures embedded. Uses REVTEX and epsf macro

    Designer Gene Delivery Vectors: Molecular Engineering and Evolution of Adeno-Associated Viral Vectors for Enhanced Gene Transfer

    Get PDF
    Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure–function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. β€œShielding” polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating β€˜designer’ gene delivery vectors with enhanced properties

    Silencing and Un-silencing of Tetracycline-Controlled Genes in Neurons

    Get PDF
    To identify the underlying reason for the controversial performance of tetracycline (Tet)-controlled regulated gene expression in mammalian neurons, we investigated each of the three components that comprise the Tet inducible systems, namely tetracyclines as inducers, tetracycline-transactivator (tTA) and reverse tTA (rtTA), and tTA-responsive promoters (Ptets). We have discovered that stably integrated Ptet becomes functionally silenced in the majority of neurons when it is inactive during development. Ptet silencing can be avoided when it is either not integrated in the genome or stably-integrated with basal activity. Moreover, long-term, high transactivator levels in neurons can often overcome integration-induced Ptet gene silencing, possibly by inducing promoter accessibility

    Lung cancer cell migration is regulated via repressing growth factor PTN/RPTP Ξ²/ΞΆ signaling by menin

    Get PDF
    Menin encoded by the multiple endocrine neoplasia type 1 (MEN1) gene is associated with chromatin and the nuclear matrix and exerts multiple biological functions including regulation of cell proliferation and adhesion. Men1 mutations increase the likelihood of lung cancer development in mice. Menin expression is reduced in certain human non-small cell lung cancer cells, and reduction of menin is closely correlated with increased lung cancer metastasis to lymph nodes. However, it is poorly understood whether menin affects migration of lung cancer cells. In this study, we show that menin-regulated A549 lung cancer cell migration, which was mediated by growth factor pleiotrophin (PTN) and its cell surface receptor, protein tyrosine phosphatase beta/zeta (RPTP Ξ²/ΞΆ). Ectopic menin expression significantly repressed PTN transcription, but indirectly inhibited RPTP Ξ²/ΞΆ expression through repressing PTN expression. Further studies revealed that menin-regulated cell migration through PTN/RPTP Ξ²/ΞΆ, in conjunction with integrin Ξ±vΞ²3, focal adhesion kinase, phosphatidylinositol 3-kinase and phosphorylated extracellular signal regulated kinase 1/2. These findings provide mechanistic insights into the molecular basis for menin/PTN-mediated regulation of A549 lung cancer cell migration

    Adeno-Associated Viral Vector-Mediated Transgene Expression Is Independent of DNA Methylation in Primate Liver and Skeletal Muscle

    Get PDF
    Recombinant adeno-associated viral (rAAV) vectors can support long-term transgene expression in quiescent tissues. Intramuscular (IM) administration of a single-stranded AAV vector (ssAAV) in the nonhuman primate (NHP) results in a peak protein level at 2–3 months, followed by a decrease over several months before reaching a steady-state. To investigate transgene expression and vector genome persistence, we previously demonstrated that rAAV vector genomes associate with histones and form a chromatin structure in NHP skeletal muscle more than one year after injection. In the mammalian nucleus, chromatin remodeling via epigenetic modifications plays key role in transcriptional regulation. Among those, CpG hyper-methylation of promoters is a known hallmark of gene silencing. To assess the involvement of DNA methylation on the transgene expression, we injected NHP via the IM or the intravenous (IV) route with a recombinant ssAAV2/1 vector. The expression cassette contains the transgene under the transcriptional control of the constitutive Rous Sarcoma Virus promoter (RSVp). Total DNA isolated from NHP muscle and liver biopsies from 1 to 37 months post-injection was treated with sodium bisulfite and subsequently analyzed by pyrosequencing. No significant CpG methylation of the RSVp was found in rAAV virions or in vector DNA isolated from NHP transduced tissues. Direct de novo DNA methylation appears not to be involved in repressing transgene expression in NHP after gene transfer mediated by ssAAV vectors. The study presented here examines host/vector interactions and the impact on transgene expression in a clinically relevant model

    Homologous Recombination Mediates Functional Recovery of Dysferlin Deficiency following AAV5 Gene Transfer

    Get PDF
    The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV) gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb) negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9). Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes

    GABA, glutamine, glutamate oxidation and succinic semialdehyde dehydrogenase expression in human gliomas

    Get PDF
    Bioenergetic characterisation of malignant tissues revealed that different tumour cells can catabolise multiple substrates as salvage pathways, in response to metabolic stress. Altered metabolism in gliomas has received a lot of attention, especially in relation to IDH mutations, and the associated oncometabolite D-2-hydroxyglutarate (2-HG) that impact on metabolism, epigenetics and redox status. Astrocytomas and oligodendrogliomas, collectively called diffuse gliomas, are derived from astrocytes and oligodendrocytes that are in metabolic symbiosis with neurons; astrocytes can catabolise neuron-derived glutamate and gamma-aminobutyric acid (GABA) for supporting and regulating neuronal functions.Metabolic characteristics of human glioma cell models - including mitochondrial function, glycolytic pathway and energy substrate oxidation - in relation to IDH mutation status and after 2-HG incubation were studied to understand the Janus-faced role of IDH1 mutations in the progression of gliomas/astrocytomas. The metabolic and bioenergetic features were identified in glioma cells using wild-type and genetically engineered IDH1-mutant glioblastoma cell lines by metabolic analyses with Seahorse, protein expression studies and liquid chromatography-mass spectrometry.U251 glioma cells were characterised by high levels of glutamine, glutamate and GABA oxidation. Succinic semialdehyde dehydrogenase (SSADH) expression was correlated to GABA oxidation. GABA addition to glioma cells increased proliferation rates. Expression of mutated IDH1 and treatment with 2-HG reduced glutamine and GABA oxidation, diminished the pro-proliferative effect of GABA in SSADH expressing cells. SSADH protein overexpression was found in almost all studied human cases with no significant association between SSADH expression and clinicopathological parameters (e.g. IDH mutation).Our findings demonstrate that SSADH expression may participate in the oxidation and/or consumption of GABA in gliomas, furthermore, GABA oxidation capacity may contribute to proliferation and worse prognosis of gliomas. Moreover, IDH mutation and 2-HG production inhibit GABA oxidation in glioma cells. Based on these data, GABA oxidation and SSADH activity could be additional therapeutic targets in gliomas/glioblastomas

    Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells)

    Get PDF
    In recent years, the development of powerful viral gene transfer techniques has greatly facilitated the study of gene function. This review summarises some of the viral delivery systems routinely used to mediate gene transfer into cell lines, primary cell cultures and in whole animal models. The systems described were originally discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop that was held at University College London on 1st April 2009. Recombinant-deficient viral vectors (viruses that are no longer able to replicate) are used to transduce dividing and post-mitotic cells, and they have been optimised to mediate regulatable, powerful, long-term and cell-specific expression. Hence, viral systems have become very widely used, especially in the field of neurobiology. This review introduces the main categories of viral vectors, focusing on their initial development and highlighting modifications and improvements made since their introduction. In particular, the use of specific promoters to restrict expression, translational enhancers and regulatory elements to boost expression from a single virion and the development of regulatable systems is described
    • …
    corecore