44,591 research outputs found
BILIPROTEINS FROM THE BUTTERFLY Pieris brassicae STUDIED BY TIME-RESOLVED FLUORESCENCE AND COHERENT ANTI-STOKES RAMAN SPECTROSCOPY
The fluorescence decay time of the biliverdin IX7 chromophore present in biliproteins isolated from Pieris brassicae is determined to be 44 ± 3 ps. This value suggests a cyclic helical chromophore structure. The vibrational frequencies determined by CARS-spectroscopy are compared with those of model compounds. The data confirm that the chromophore in the protein-bound state adopts a cyclic-helical, flexible conformation
Formation of nanocrystals based on decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy
Primary crystallization and decomposition in the bulk amorphous alloy Ar41.2Ti13.8Cu12.5Ni10Be22.5 have been studied by small angle neutron scattering (SANS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). SANS data of samples annealed isothermally at 623 K exhibit an interference peak centered at q=0.46 nm(^-1) after an incubation time of about 100 min. TEM and DSC investigations confirm that the respective periodic variation in the scattering length density is due to the formation of nanocrystals embedded in the amorphous matrix. These observations suggest that during the incubation time a chemical decomposition process occurs and the related periodic composition fluctuations give rise to the observed periodic arrangement of the nanocrystals
The reflection and transmission properties of a triple band dichroic surface
The development of a triple-band dichroic surface design is detailed that is reflective in the Ka-band from 22.5 to 27.3 GHz and the Ku-band from 13.7 to 15.1 GHz, yet transparent in the S-band from 2.0 to 2.3 GHz, for all planes of incidence, and for all angles of incidence out to eta = 45 deg. The design is comprised of two gangbuster whole-surfaces separated by a distance, d, that is comparable to a fraction of a wavelength in S-band, and enhanced by the addition of a dielectric matching plate. The gangbuster array is comprised of tightly packed straight skewed dipole elements referred to as half-surfaces. Two of these half-surfaces are oriented orthogonal to each other and placed an array separation distance, s, apart to form the gangbuster whole-surface which allows any arbitrary plane of incidence. Results are given for the triple-band design with and without dielectric and conduction losses. The cross polarization properties of the dichroic surface was further investigated. It is shown that the reflection cross polarized component is dominated by the geometry of the front whole surface of the design (particularly the array separation s) and is never more than -22.5 dB in the frequency band 0 to 30 GHz. The transmission cross polarization component is dependent on both whole-surfaces and is never more than -30 dB in the same frequency band
Small-angle x-ray-scattering study of phase separation and crystallization in the bulk amorphous Mg62Cu25Y10Li3 alloy
We report on a small-angle x-ray-scattering (SAXS) and differential scanning calorimetry study of phase separation and crystallization in rapidly quenched amorphous Mg62Cu25Y10Li3 alloy samples. Differential scanning calorimetry demonstrates the occurrence of crystallization and grain growth upon isothermal annealing of these samples at 135 °C. The SAXS studies show the presence of large inhomogeneities even in the rapidly quenched as-prepared Mg62Cu25Y10Li3 alloy that is attributed to phase separation in the undercooled liquid during the cooling process. After isothermal annealing at 135 °C for longer than 30 min the samples exhibit a strong SAXS intensity that monotonically increases with increasing annealing time. During heat treatment, crystallization and growth of a nanocrystalline bcc-Mg7Li3 phase occurs in the Y-poor and MgLi-rich domains. The initially rough boundaries of the nanocrystals become sharper with increasing annealing time. Anomalous small-angle x-ray-scattering investigations near the Cu K edge indicate that while Cu is distributed homogeneously in the as-prepared sample, a Cu composition gradient develops between the matrix and the bcc-Mg7Li3 nanocrystals in the annealed sample
Decomposition and primary crystallization in undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts
Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glasses were prepared by cooling the melt with a rate of about 10 K/s and investigated with respect to their chemical and structural homogeneity by atom probe field ion microscopy and transmission electron microscopy. The measurements on these slowly cooled samples reveal that the alloy exhibits phase separation in the undercooled liquid state. Significant composition fluctuations are found in the Be and Zr concentration but not in the Ti, Cu, and Ni concentration. The decomposed microstructure is compared with the microstructure obtained upon primary crystallization, suggesting that the nucleation during primary crystallization of this bulk glass former is triggered by the preceding diffusion controlled decomposition in the undercooled liquid state
Study of leakage currents in pCVD diamonds as function of the magnetic field
pCVD diamond sensors are regularly used as beam loss monitors in accelerators
by measuring the ionization of the lost particles. In the past these beam loss
monitors showed sudden increases in the dark leakage current without beam
losses and these erratic leakage currents were found to decrease, if magnetic
fields were present. Here we report on a systematic study of leakage currents
inside a magnetic field. The decrease of erratic currents in a magnetic field
was confirmed. On the contrary, diamonds without erratic currents showed an
increase of the leakage current in a magnetic field perpendicular to the
electric field for fields up to 0.6T, for higher fields it decreases. A
preliminary model is introduced to explain the observations.Comment: 6 pages, 16 figures, poster at Hasselt Diamond Workshop, Mar 2009,
accepted version for publicatio
Origin of Lagrangian Intermittency in Drift-Wave Turbulence
The Lagrangian velocity statistics of dissipative drift-wave turbulence are
investigated. For large values of the adiabaticity (or small collisionality),
the probability density function of the Lagrangian acceleration shows
exponential tails, as opposed to the stretched exponential or algebraic tails,
generally observed for the highly intermittent acceleration of Navier-Stokes
turbulence. This exponential distribution is shown to be a robust feature
independent of the Reynolds number. For small adiabaticity, algebraic tails are
observed, suggesting the strong influence of point-vortex-like dynamics on the
acceleration. A causal connection is found between the shape of the probability
density function and the autocorrelation of the norm of the acceleration
- …