1,016 research outputs found
Measurement of the Luminosity in the ZEUS Experiment at HERA II
The luminosity in the ZEUS detector was measured using photons from electron
bremsstrahlung. In 2001 the HERA collider was upgraded for operation at higher
luminosity. At the same time the luminosity-measuring system of the ZEUS
experiment was modified to tackle the expected higher photon rate and
synchrotron radiation. The existing lead-scintillator calorimeter was equipped
with radiation hard scintillator tiles and shielded against synchrotron
radiation. In addition, a magnetic spectrometer was installed to measure the
luminosity independently using photons converted in the beam-pipe exit window.
The redundancy provided a reliable and robust luminosity determination with a
systematic uncertainty of 1.7%. The experimental setup, the techniques used for
luminosity determination and the estimate of the systematic uncertainty are
reported.Comment: 25 pages, 11 figure
Combined QCD and electroweak analysis of HERA data
A simultaneous fit of parton distribution functions (PDFs) and electroweak
parameters to HERA data on deep inelastic scattering is presented. The input
data are the neutral current and charged current inclusive cross sections which
were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In
addition, the polarisation of the electron beam was taken into account for the
ZEUS data recorded between 2004 and 2007. Results on the vector and
axial-vector couplings of the Z boson to u- and d-type quarks, on the value of
the electroweak mixing angle and the mass of the W boson are presented. The
values obtained for the electroweak parameters are in agreement with Standard
Model predictions.Comment: 32 pages, 10 figures, accepted by Phys. Rev. D. Small corrections
from proofing process and small change to Fig. 12 and Table
The dependence of dijet production on photon virtuality in ep collisions at HERA
The dependence of dijet production on the virtuality of the exchanged photon,
Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 <
2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of
38.6 pb^-1.
Dijet cross sections were measured for jets with transverse energy E_T^jet >
7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame
in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon
momentum entering the hard process, was used to enhance the sensitivity of the
measurement to the photon structure. The Q^2 dependence of the ratio of low- to
high-xg^obs events was measured.
Next-to-leading-order QCD predictions were found to generally underestimate
the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models
based on leading-logarithmic parton-showers, using a partonic structure for the
photon which falls smoothly with increasing Q^2, provide a qualitative
description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
Dissociation of virtual photons in events with a leading proton at HERA
The ZEUS detector has been used to study dissociation of virtual photons in
events with a leading proton, gamma^* p -> X p, in e^+p collisions at HERA. The
data cover photon virtualities in two ranges, 0.03<Q^2<0.60 GeV^2 and 2<Q^2<100
GeV^2, with M_X>1.5 GeV, where M_X is the mass of the hadronic final state, X.
Events were required to have a leading proton, detected in the ZEUS leading
proton spectrometer, carrying at least 90% of the incoming proton energy. The
cross section is presented as a function of t, the squared four-momentum
transfer at the proton vertex, Phi, the azimuthal angle between the positron
scattering plane and the proton scattering plane, and Q^2. The data are
presented in terms of the diffractive structure function, F_2^D(3). A
next-to-leading-order QCD fit to the higher-Q^2 data set and to previously
published diffractive charm production data is presented
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment
The OLYMPUS collaboration reports on a precision measurement of the
positron-proton to electron-proton elastic cross section ratio, ,
a direct measure of the contribution of hard two-photon exchange to the elastic
cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams
were directed through a hydrogen gas target internal to the DORIS storage ring
at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and
time-of-flight scintillators detected elastically scattered leptons in
coincidence with recoiling protons over a scattering angle range of to . The relative luminosity between the two beam species
was monitored using tracking telescopes of interleaved GEM and MWPC detectors
at , as well as symmetric M{\o}ller/Bhabha calorimeters at
. A total integrated luminosity of 4.5~fb was collected. In
the extraction of , radiative effects were taken into account
using a Monte Carlo generator to simulate the convolutions of internal
bremsstrahlung with experiment-specific conditions such as detector acceptance
and reconstruction efficiency. The resulting values of , presented
here for a wide range of virtual photon polarization ,
are smaller than some hadronic two-photon exchange calculations predict, but
are in reasonable agreement with a subtracted dispersion model and a
phenomenological fit to the form factor data.Comment: 5 pages, 3 figures, 2 table
A Large Hadron Electron Collider at CERN
This document provides a brief overview of the recently published report on
the design of the Large Hadron Electron Collider (LHeC), which comprises its
physics programme, accelerator physics, technology and main detector concepts.
The LHeC exploits and develops challenging, though principally existing,
accelerator and detector technologies. This summary is complemented by brief
illustrations of some of the highlights of the physics programme, which relies
on a vastly extended kinematic range, luminosity and unprecedented precision in
deep inelastic scattering. Illustrations are provided regarding high precision
QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed
to run synchronously with the LHC in the twenties and to achieve an integrated
luminosity of O(100) fb. It will become the cleanest high resolution
microscope of mankind and will substantially extend as well as complement the
investigation of the physics of the TeV energy scale, which has been enabled by
the LHC
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
- …
