48 research outputs found
A Genetic Strategy for Stochastic Gene Activation with Regulated Sparseness (STARS)
It remains a challenge to establish a straightforward genetic approach for controlling the probability of gene activation or knockout at a desired level. Here, we developed a method termed STARS: stochastic gene activation with genetically regulated sparseness. The stochastic expression was achieved by two cross-linked, mutually-exclusive Cre-mediated recombinations. The stochastic level was further controlled by regulating Cre/lox reaction kinetics through varying the intrachromosomal distance between the lox sites mediating one of the recombinations. In mammalian cell lines stably transfected with a single copy of different STARS transgenes, the activation/knockout of reporter genes was specifically controlled to occur in from 5% to 50% of the cell population. STARS can potentially provide a convenient way for genetic labeling as well as gene expression/knockout in a population of cells with a desired sparseness level
Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia
The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia..O. and T. Berg (BE 4198/1-1 and BE 4198/2-1) are supported by the Deutsche Forschungsgemeinschaft (DFG). K.S. is supported by a Leukemia and Lymphoma Society Scholar Award and by the National Cancer Institute (R01 CA140292). F.C. is supported by an EMBO long-term fellowship (1305-2015 and Marie Curie ActionsLTFCOFUND2013/GA-2013-609409). F.K. was supported by grants from Deutsche Krebshilfe (grant 109420; Max-Eder program), fellowship 2010/04 by the European Hematology Association, and by the DFG (SFB 1074, project A5). A.R. was supported by the DFG (SFB 1074, project A5) and the gender equality program by the DFG (SFB 1074, project Z2), a fellowship from the Canadian Institutes of Health Research, and the Baustein Startförderung Program of the Medical Faculty, Ulm University. Work in the Department of Haematology in Cambridge is supported by Bloodwise (grant ref. 13003), the Wellcome Trust (grant ref. 104710/Z/14/Z), the Medical Research Council (MC_PC_12009), the Kay Kendall Leukemia Fund (KKL952), the Cambridge NIHR Biomedical Research Center (NF-BR-0412-10321), the Cambridge Experimental Cancer Medicine Centre itself receives funding from NIHR (NF-EC-0412-10442), the Leukemia and Lymphoma Society of America (grant ref. 07037), and core support grants from the Wellcome Trust (100140/Z/12/Z and 097922/Z/11/Z) and MRC (MC_PC_12009)
The mammalian gene function resource: the International Knockout Mouse Consortium.
In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed high-throughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research
The mammalian gene function resource: The International Knockout Mouse Consortium
In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed highthroughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research