47 research outputs found

    Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects

    Get PDF
    Diel (24 h) leaf growth patterns were differently affected by temperature variations and the circadian clock in several plant species. In the monocotyledon Zea mays, leaf elongation rate closely followed changes in temperature. In the dicotyledons Nicotiana tabacum, Ricinus communis, and Flaveria bidentis, the effect of temperature regimes was less obvious and leaf growth exhibited a clear circadian oscillation.These differences were related neither to primary metabolism nor to altered carbohydrate availability for growth. The effect of endogenous rhythms on leaf growth was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No rythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted in the two dicotyledons. Based on model simulations it is concluded that diel leaf growth patterns in mono- and dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to environmental changes such as temperature and evaporative demand. Apparently very distinct diel leaf growth behaviour of monocotyledons and dicotyledons can thus be explained by the different degrees to which diel temperature variations affect leaf growth in the two groups of species which, in turn, depends on the extent of the leaf growth control by internal clocks

    A new approach to estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter backscatter

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C11003, doi:10.1029/2006JC003819.A new approach to estimating air-sea gas transfer velocities based on normalized backscatter from the dual-frequency TOPEX and Jason-1 altimeters is described. The differential scattering of Ku-band (13.6 GHz) and C-band (5.3 GHz) microwave pulses is used to isolate the contribution of small-scale waves to mean square slope and gas transfer. Mean square slope is derived for the nominal wave number range 40–100 rad m−1 by differencing mean square slope estimates computed from the normalized backscatter in each band, using a simple geometric optics model. Model parameters for calculating the differenced mean square slope over this wave number range are optimized using in situ optical slope measurements. An empirical relation between gas transfer velocity and mean square slope, also based on field measurements, is then used to derive gas transfer velocities. Initial results demonstrate that the calculated transfer velocities exhibit magnitudes and a dynamic range which are generally consistent with existing field measurements. The new algorithm is used to construct monthly global maps of gas transfer velocity and to illustrate seasonal transfer velocity variations over a 1-year period. The measurement precision estimated from >106 duplicate observations of the sea surface by TOPEX and Jason-1 altimeters orbiting in tandem is better than 10%. The estimated overall uncertainty of the method is ±30%. The long-term global, area-weighted, Schmidt number corrected, mean gas transfer velocity is 13.7 ± 4.1 cm h−1. The new approach, based on surface roughness, represents a potential alternative to commonly used parameterizations based on wind speed.Financial support for this research from the National Aeronautics and Space Administration through Jet Propulsion Laboratory contract 961425 and the NOAA Global Carbon Cycle Program under grant NA16GP2918, Office of Global Programs is gratefully acknowledged

    Mechanical Stress Induces Remodeling of Vascular Networks in Growing Leaves

    Get PDF
    International audienceDifferentiation into well-defined patterns and tissue growth are recognized as key processes in organismal development. However, it is unclear whether patterns are passively, homogeneously dilated by growth or whether they remodel during tissue expansion. Leaf vascu-lar networks are well-fitted to investigate this issue, since leaves are approximately two-dimensional and grow manyfold in size. Here we study experimentally and computationally how vein patterns affect growth. We first model the growing vasculature as a network of viscoelastic rods and consider its response to external mechanical stress. We use the so-called texture tensor to quantify the local network geometry and reveal that growth is heterogeneous , resembling non-affine deformations in composite materials. We then apply mechanical forces to growing leaves after veins have differentiated, which respond by anisotropic growth and reorientation of the network in the direction of external stress. External mechanical stress appears to make growth more homogeneous, in contrast with the model with viscoelastic rods. However, we reconcile the model with experimental data by incorporating randomness in rod thickness and a threshold in the rod growth law, making the rods viscoelastoplastic. Altogether, we show that the higher stiffness of veins leads to their reorientation along external forces, along with a reduction in growth heterogeneity. This process may lead to the reinforcement of leaves against mechanical stress. More generally , our work contributes to a framework whereby growth and patterns are coordinated through the differences in mechanical properties between cell types

    Jaku’eke! Auf, lasst uns uns bewegen! Organisation als Praxis am Beispiel der Organización Campesina del Norte, Nordostparaguay

    No full text

    Die Entscheidungsnützlichkeit der Ertragsteuerbilanzierung nach IFRS/US-GAAP unter besonderer Berücksichtigung latenter Steuern

    Full text link
    Investoren verfolgen das Ziel der Marktwertmaximierung des Eigenkapitals und stellen beim Vergleich von Investitionsalternativen den Marktwert von Unternehmen dem ihrer Ansicht nach angemessenen Grenzpreis gegenüber. Da die Ermittlung dieses Grenzpreises meist auf der Basis von Discounted Cash Flows erfolgt und diese durch die Steuerbelastung von Unternehmen und Anteilseignern erheblich beeinflusst werden, müssen Investoren zukünftige Ertragsteuerzahlungsströme prognostizieren. Sie sind dabei auf entscheidungsnützliche Informationen angewiesen, deren Vermittlung das erklärte Ziel der nach IFRS und US-GAAP erstellten Jahresabschlüsse ist. Wilhelm Schmundt untersucht, in welchem Maß die internationalen Standardsetter diesem Ziel im Bereich der Ertragsteuerbilanzierung nach IAS 12 bzw. SFAS 109 gerecht werden. Der Autor präsentiert eine Systematisierung der vom Investor zu berücksichtigenden Ertragsteuerzahlungsströme und stellt in einer umfassenden Analyse dar, inwieweit diese aus Jahresabschlussinformationen abgeleitet und in Discounted Cash Flow-Modelle integriert werden können. Abschließend gibt er Empfehlungen für eine Modifikation der IAS 12 bzw. SFAS 109
    corecore