2 research outputs found
MLPerf Inference Benchmark
Machine-learning (ML) hardware and software system demand is burgeoning.
Driven by ML applications, the number of different ML inference systems has
exploded. Over 100 organizations are building ML inference chips, and the
systems that incorporate existing models span at least three orders of
magnitude in power consumption and five orders of magnitude in performance;
they range from embedded devices to data-center solutions. Fueling the hardware
are a dozen or more software frameworks and libraries. The myriad combinations
of ML hardware and ML software make assessing ML-system performance in an
architecture-neutral, representative, and reproducible manner challenging.
There is a clear need for industry-wide standard ML benchmarking and evaluation
criteria. MLPerf Inference answers that call. In this paper, we present our
benchmarking method for evaluating ML inference systems. Driven by more than 30
organizations as well as more than 200 ML engineers and practitioners, MLPerf
prescribes a set of rules and best practices to ensure comparability across
systems with wildly differing architectures. The first call for submissions
garnered more than 600 reproducible inference-performance measurements from 14
organizations, representing over 30 systems that showcase a wide range of
capabilities. The submissions attest to the benchmark's flexibility and
adaptability.Comment: ISCA 202
The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI): instrument and pre-launch testing
This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI), to be launched onboard of ESA's Herschel Space Observatory, by 2008. It includes the first results from the instrument level tests. The instrument is designed to be electronically tuneable over a wide and continuous frequency range in the Far Infrared, with velocity resolutions better than 0.1 km/s with a high sensitivity. This will enable detailed investigations of a wide variety of astronomical sources, ranging from solar system objects, star formation regions to nuclei of galaxies. The instrument comprises 5 frequency bands covering 480-1150 GHz with SIS mixers and a sixth dual frequency band, for the 1410-1910 GHz range, with Hot Electron Bolometer Mixers (HEB). The Local Oscillator (LO) subsystem consists of a dedicated Ka-band synthesizer followed by 7 times 2 chains of frequency multipliers, 2 chains for each frequency band. A pair of Auto-Correlators and a pair of Acousto-Optic spectrometers process the two IF signals from the dual-polarization front-ends to provide instantaneous frequency coverage of 4 GHz, with a set of resolutions (140 kHz to 1 MHz), better than < 0.1 km/s. After a successful qualification program, the flight instrument was delivered and entered the testing phase at satellite level. We will also report on the pre-flight test and calibration results together with the expected in-flight performance